P

SACRA

EXPERT INTERVIEW UPDATED
08/21/2023

Zachary Kirby, co-founder of
Vessel, on building the Vercel for
integrations

TEAM

Jan-Erik Asplund
Co-Founder
jan@sacra.com

DISCLAIMERS

This report is for information purposes only and is not to be used or considered as an offer or the solicitation of an offer
to sell or to buy or subscribe for securities or other financial instruments. Nothing in this report constitutes investment,
legal, accounting or tax advice or a representation that any investment or strategy is suitable or appropriate to your
individual circumstances or otherwise constitutes a personal trade recommendation to you.

This research report has been prepared solely by Sacra and should not be considered a product of any person or entity
that makes such report available, if any.

Information and opinions presented in the sections of the report were obtained or derived from sources Sacra believes
are reliable, but Sacra makes no representation as to their accuracy or completeness. Past performance should not be
taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is
made regarding future performance. Information, opinions and estimates contained in this report reflect a determination
at its original date of publication by Sacra and are subject to change without notice.

Sacra accepts no liability for loss arising from the use of the material presented in this report, except that this exclusion
of liability does not apply to the extent that liability arises under specific statutes or regulations applicable to Sacra. Sacra
may have issued, and may in the future issue, other reports that are inconsistent with, and reach different conclusions
from, the information presented in this report. Those reports reflect different assumptions, views and analytical methods
of the analysts who prepared them and Sacra is under no obligation to ensure that such other reports are brought to the
attention of any recipient of this report.

All rights reserved. All material presented in this report, unless specifically indicated otherwise is under copyright to
Sacra. Sacra reserves any and all intellectual property rights in the report. All trademarks, service marks and logos used
in this report are trademarks or service marks or registered trademarks or service marks of Sacra. Any modification,
copying, displaying, distributing, transmitting, publishing, licensing, creating derivative works from, or selling any report is
strictly prohibited. None of the material, nor its content, nor any copy of it, may be altered in any way, transmitted to,
copied or distributed to any other party, without the prior express written permission of Sacra. Any unauthorized
duplication, redistribution or disclosure of this report will result in prosecution.

WWW.SacCra.com

mailto:jan@sacra.com
https://www.sacra.com/

Published on Aug 21st, 2023

Zachary Kirby, co-founder of
Vessel, on building the Vercel for
integrations

By Jan-Erik Asplund

EXPERT INTERVIEW

Zachary
Kirby
Co-founder
Vessel

Background

Zachary Kirby is co-founder of Vessel, the developer-first,
native integration platform for GTM tools.

Interview

You're a B2B SaaS company in 2023. How do you build
integrations and how has that process changed over the
last 5 years? What will it look like over the next 5 years?

Really understanding the answer to that requires
understanding two other pieces of information about B2B
SaaS, in general.

The first piece is there's a lot more B2B SaaS out there. The
amount has exponentially grown year over year.

There's a company called Productiv that tracks essentially the
average number of B2B SaaS apps that companies use and
they came up with a report two years ago. 254 was the
average number, which is already absurd.

They came up with another report and the number was 310.
There's just a hell of a lot more SaaS out there being used,
being produced, being worked on.

The fundamentals of having your application connect to
another application and push data hasn’t changed. Integrations
have been around for almost as long as B2B SaaS has been,
but the requirements for building integrations have become
extremely difficult to manage with this proliferation of SaaS.
Developers have a lot more demands on them to go and build
integrations and those integrations are more complex to build.

The second piece is because of that competition, it's no longer
sufficient to just have a Zapier integration or some sort of
lightweight integration that only pushes your contacts from
your CRM to your sales engagement platform. Companies are
competing on the quality of the integration that they have.

There used to be this world—and I'm going to talk a lot more
about this later because this is our whole thesis—where
internal integrations were treated the same way as external
integrations. What people are starting to see, and why these
integration platforms are taking off right now, is that that's no
longer the case.

Now, | meet companies all the time where they say that they
won a deal because their Zendesk or Salesforce integration
was better. You're seeing customer-facing integrations get
treated in the same genre as any other product features, and
so it's no longer sufficient to just have that same thing. Those
two together have combined to raise the priority of customer-
facing integrations. | think internal integrations—stuff that you
just make so that your marketing team can publish things from
their Twitter account to their Medium account or something like
that—Ilargely haven't seen too much innovation, but customer-
facing integrations have heated up tremendously because of
those two facts.

What does all of this mean?

The world nowadays, If you're a B2B SaaS company, building
in-house is looking way, way less appealing. We're starting to
see the shift that we saw in authentication a while back.
People used to build authentication in-house. Then, there
came these demands: "l want to be able to authenticate to
your app through Google. | want to be able to use a magic
link."

Now, by and large, people don't ever even consider building
authentication themselves in-house. They have OAuth,
PropelAuth, and all kinds of different providers—there are
hundreds of them out there.

We're now seeing the same thing happen in customer-facing
integrations,where this whole idea of should we build in-house
or should we outsource is becoming a lot more about which
outsourced tools we should use, not should we build it
ourselves.

In the past, it would have been, “Our customers use Salesforce
and HubSpot. That's it. Let's just build those integrations,
ourselves.” That’s no longer the case. You're starting to see
these providers take a much bigger stage because essentially
that's what they're built for—helping you build these at scale.

Are integrations table stakes or do companies have a
competitive advantage in how they're implemented and/or
in how they enable partnerships?

It really depends on the type of company and especially the
founder and their experience working with integrations before.

We've had certain companies come to us before they built a
single integration because they know they're a sales tool and
that they're going to need a Salesforce hub.

This founder, or this company, or this integration leader has
built a Salesforce integration before and they're just thinking,
"Hell, no. I'm not building this again myself. This was such a
horrible experience. | will use anything that will help me with
this." So they start looking right away and integrate with us
because that's essentially what we provide.

However, we've also seen on the whole, most companies wait
to be asked for these integrations. It's less of a push and more

of a pull. They'll say they have these integrations on their
website because they know it gets them into the
conversations, but you won't believe how many companies out
there say they integrate with 100 tools and they have 0 to 1 of
those actually built out.

They wait—which | think is an intelligent strategy—for a
company to come to them and say, "Hey! | want to use your
tool. | want to improve my rep's close rates, but we use Close
or Pipedrive or whatever, and so | need that integration in
order to use you." That's when they decide, "Okay. It's time to
build that."

A lot of companies still start building one of these in-house, but
once they’ve done that two or three or four times, they start to
take a step back and say, "Hey! Wait a second. This is taking
up a fifth of my week just fixing bugs in these integrations or
just adding new integrations." They’re not an integration
provider. That isn't their main use case. That's when they begin
to search online, ask around, and find out about integration
platforms.

There are a lot of different approaches to building in-
house/outsourcing/sort of a hybrid of the two. How do
customers decide between buying iPaaS, embedded
iPaa$S, universal APIls and native integrations? How do we
think about and make sense of these products?

The space is difficult to navigate right now. There are a lot of
players in the space and many different ways to build
integrations. You touched on a bunch of them. Let me just
break it down for you the way that we think about it.

At the very top it’s just building integrations. We split that off
into two categories: customer-facing and internal integrations.

The reason that we split those off is because those are two
very different types of integrations that you need to build. You
don't really have to deal as much with OAuth or worry about
your customer's rate limits or just general concerns that you
have with customer-facing integration when you do something
internally.

| won't touch on the internal integration space because that's
not what we do, and that's a whole other beast. Those are your
Workato, Zapier, Tray, etc. Internal integrations were what got

the integration space started, so all these companies
mentioned above were built initially with internal use cases in
mind or around them. What that means is these are no-code
workflows tools. These are a lot of, let me drag and drop a
couple of building blocks together that transform data. This is
built for a product team. This is built for a non-technical user.
Then, they realize, “Hey! This is great for internal use cases.
We can also slap an embedded authentication modal into your
product and make this work for external facing integrations.”
There's a bunch of companies in that space and so, those
internal integrations start becoming external integration use
cases. We broadly categorize those as workflow solutions and
that's the status quo for a while.

These are still the biggest companies out there—Zapier is 10
times bigger than any of the other companies I'm about to
mention. Same for Workato, Tray, and Paragon and all these
other companies that you've heard of.

There’s this new wave or genre of thinking that hinges on
bringing all of this into your code. It’s the idea that it doesn’t
really make sense to put all this stuff built for product
engineers into a bunch of no-code building blocks.

If I'm competing with these other companies, | need my
engineers working on how deep my integrations are. | need
people in the code hacking away, figuring out how we can be
10 times better than our competitors. You can't do that with a
workflow solution. You need that to be in your code. You need
fine-grained control. We largely categorize that genre of
company as a native integrations platform.

I'm biased here because we’re building a "native integration
platform” but | would put all of Vessel, Nango, Superglue,
Merge, etc. into that category. What we share is that instead of
using a workflow solution, you are actually writing this inside of
your code. You're making either an API call to an ETL database
or you're making an API call directly to the actual downstream
integration platform, or they're doing a transformation on the
data etc.

That's what's starting to gain traction and people are waking up
to the idea of, "l can't be competitive using a workflow solution.
| have to use this in my code and | need that for control, which

means | need to use a native integration platform."

You touched on another thing—the universal API. | don't even
categorize that as a type of integration platform or as an iPaaS
in general.

To me, universal API versus ETL is a feature. That's not really
difficult work. Anyone can go and figure out how to map these
fields. There's difficulty in getting it right and it's definitely more
of an art than a science in some regards. But by and large,
that's not the difficult part.

The difficult part is the data extraction. | get frustrated
sometimes when we get compared to a company like Finch,
Rutter, and even Merge HRIS solution. That's a very different
type of company than what we're building, which is about
product integrations.

All of the integrations we work with for the most part don't
require web scraping. A lot of them have APIs and so we can
build a lot more of them really quickly. We focus entirely on our
ETL pipeline so we have, | would consider a world-class ETL
pipeline dedicated to specifically the types of integrations that
we provide.

We can pull Salesforce data faster than anyone else on the
market because we custom-built pipelines specifically for
pulling Salesforce data and shooting that right into your
database. Or we'll hook the database and you can hit our
database with some dedicated APIs versus you going and
looking at a Plaid or a Finch.

Some of these walled garden data sources are much harder to
extract data from. There's a lot more value that they're
retrieving—and not the breadth of the integrations—in just the
fact that they can even offer you this banking data to begin
with at all. When you start to talk about native integrations
platforms, it's less about the feature set. It's like “Do you have
a Universal API1? Do you do ETL?” That's not necessarily the
difficult part. | think you have to look really closely at what is
the integration set that they provide and how are they actually
extracting that data.

That's where it starts to differentiate and where | throw these
verticalized solutions, like Plaid, Finch, Rutter into one
category and Nango, Superglue, us into another category of
product-based integrations.

What is Vessel in short, who are your customers and why
do they choose Vessel? Are there any early signs of
product-market fit that you can share?

For Vessel, we describe ourselves as a native, a developer-
first native integrations platform.

We focus very heavily on selling to developers, integration
development teams, and technical founders. Our pitch here is
everything that I've just mentioned before. It's not sufficient
anymore to just have a simple Salesforce integration. You're
competing with everyone else building these deep integrations
and we want to give you the tooling to do that.

We view ourselves as the Vercel or AWS of this space—that
infrastructure for building world-class integrations. We provide
unified APls, but we view that as a tool in your tool belt. We
also provide an action API which is a quirkless API| wrapper
over the downstream integrations APIs that provide typing. It
provides a better interface over the documentation so you don't
have to actually read Salesforce documentation if you want to
use something that's specific to Salesforce. Those two in
tandem allow you to get any data that you might need. When
the unified API falls apart, you can use the action API if you
need something specific and still want a first-class experience.

We also provide a bunch of features that you would also need
around how you move that data. We have webhooks. We have
a cache where we actually ETL that data on our side and keep
it up to date using polling and webhooks and all kinds of
techniques and and host that data in the database so you can
go and just hit it from our API without worrying about hosting it
yourself. We also have filtering on top of that—basically
everything you would need to ever have on a data lake for that
integration data.

The final piece is that we do the managed ETL. We actually
have an option to ETL that data right into your database. We've
spent all of our time building out these infrastructure pieces
and we view that much more as the value add that we provide
rather than, "Okay, we have this unified API, that unified API,
whatever."

If you look at our customer set, we started with GTM
integration, so we had a lot of GTM-focused customers—up

and coming startups in the GTM vertical. But because we
focused on building that infrastructure and not on very specific
verticalized solutions to every single type of integration, it was
very easy for us to add new integrations that just kind of slot
into these pipelines and use any of these features.

Just recently we went from about 20 to close to 100
integrations in the span of about two weeks because we built
this general framework and all we needed to do was set up the
authentication and hook in some endpoints. There's a little bit
of Al sprinkled in there to help build that out. You can just use
that for any of the different types of infrastructure.

What did the process of building integrations look like
before Vessel? What does it look like now?

For a lot of customers, it depends on what stage they're at,
what their cycle is, where they're at with their integrations.

Let's just take a generic average customer that hasn't built an
integration yet. They suddenly get some demand. They get a
customer that’'s come to them asking for a HubSpot integration,
and they don’t want to build it themselves.

They come to us for a specific integration, and they start with a
unified API because that allows them to create the most
generic workflow. Over time what we see is that their
customers are usually the ones that push them for different
demands.

A customer will come to them and say, "Hey! | don't want you
to touch this piece of data. | don't want you to use deals in your
product even though your product allows me to, | don't know,
filter over all my deals or have deal insights or something like
that." What they do then is use Vessel to customize the scopes
for that specific customer or not ETL data for that specific
customer.

Another customer will come to them and say, "Hey! | want to
use Salesforce cases, which is something that doesn't really
get unified." They might use the action API for this one-off thing
for Salesforce cases.

Taking a step back, we started as a unified CRM API. All of
these insights come from experience and seeing how people
used our unified API. Over time there would just be debt that

would be built up because the unified API falls apart in specific
places. Even a time span of six months sees them all of a
sudden making pass-through requests. Then, they have to go
and read the Salesforce documentation. Now they start to step
back and question, "Why am | even using Vessel? I've become
a Salesforce expert myself. Why am | paying for this?"

With our product over time, they just continue to use either the
action API or the unified APl. We have everything they could
possibly need. Essentially it gives them a lot more comfort in
knowing that no matter what their customer comes to ask, they
feel equipped to actually go and handle it and not have to build
out anything themselves in-house.

We often hear from developers that universal APIs sound
great in theory, but (1) they only support a narrow set of
use cases and (2) they tend to serve the lowest common
denominator. You end up having to write custom code to
create something differentiated and/or to handle corner
cases, and then you're back to where you started. How
does Vessel address this developer pushback with its
model?

To touch on the backlash to begin with, in our experience, a
well-designed universal API will actually probably work in more
use cases than you're thinking.

There are a lot of companies out there that need to do one or
two very specific things and then, a universal API will actually
work fine. You won't believe how many companies there are
that only want to read in contacts from the downstream system
or just read in the deals because they need that data. The hard
part is the unification. It's like, "Well, | don't want to build out an
ETL pipeline. | don't want to build out, figure out the
authentication, all the ops, everything else that goes with that."

But you're exactly right. When the unified API does fall apart, it
falls apart badly—to the point where you have to go and
basically understand how Salesforce works yourself and start
figuring out, "Okay. What are all the exact requests and
everything like that?" It actually becomes really dangerous
because you don't know exactly the implementation details.

For something like Vessel that's open source, you will. But for
something like the unified APls that other competitors out there
build, you won't know how exactly that unification works. You

don't know, “I need this specific thing with a lead. Is the unified
API actually already returning that? What is this?” | don't really
Know.

It can become dangerous. You can end up showing incorrect
data to the user. You can end up building a wrong use case.
This was something we discovered firsthand when we started
with the unified CRM API and that was happening to us. That's
what prompted us to take a step back and be, "Okay. When the
unified API falls apart, it falls apart badly. How can we provide
a different way to do this?"

We actually turned to workflow solutions. They actually have a
really great use case and like an elegant way around it. It just
happens to be a no-code Ul that it's the way that it's exposed.
They have these things called actions, and these basically are
just building blocks that you can use that are specific to
Salesforce, HubSpot. When | go to pull in a HubSpot action, |
don't need to go to the HubSpot API docs, it's all there for me. |
see a dropdown of all my options.

You can figure it out just from looking at the actual workflow
solution. We were like, "Hey! That's actually a decent idea. The
problem is that it's a no-code Ul meant for a product person.
Let's just take that and turn that into something that's meant for
a developer.”

That's what our action APl is. It's essentially that you can go to
our docs and you look at these options for Salesforce. We'll
kind of massage this to work with our unified API because it’s
built for unified API. We'll be able to point out certain use cases
that might be better suited to the unified API or overlap, or
anything like that. That creates this really nice elegant balance
where the majority of your customers or the vast majority of
your use cases all look the same. It's all this unified API. Then,
it's very specific spots. You go deep and you dive into
Salesforce. You dive into HubSpot for those specific
customers. It reduces the complexity of the code tremendously
if you had had to build that out for each use case.

What we've seen is a lot of customers kind of use that as an
upsell, right? It's like you want this specific thing for
Salesforce, for a specific thing. With HubSpot, it's like you can
use the unified API, which was easy for us to build out these
cases supported by the unified API. But if you want the more
specific thing, then that's an upsell or that's an upcharge. You

don't have to do it for every single customer. It's just when you
need it, it's there.

Vessel started out focused on go-to-market (GTM)
integrations and now is horizontal. What did you learn
about the opportunity that resulted in this change?

That's our position on the matter. Of course, we're going to see
over time that that plays out because there are players trying
to thread the needle and do both. | get frustrated when people
make comparisons to Vessel as the Plaid for CRMs, which is
admittedly how we sold ourselves at the beginning because it's
easy to conceptualize. But really, if you start to go into “Where
is the data extraction? What is the actual value that we're
delivering?”, the unified API tends to actually kind of be the
easy part.

You can take any junior developer, give them three different
API docs and say, "Hey! Find a way to match all of these up."
Where is the difficulty? Why are these providers giving so
much value? It comes down to how that data is actually
extracted. That's what goes into really fully deeply
understanding these APIs and doing that at scale.

If we take a company like Plaid, what are the kinds of products
that they would build? They're very different from the kinds of
products that we would build. Yes, we are exposing an APl on
top of ultimately some data in a different system, but they're
much more concerned about circumventing—working with
these providers to circumvent issues around web scraping.

A good example here would be, Plaid had issues extracting
data at one point, and so they had a closet full of android
phones they were using to log into. When a customer would
enter their credentials, they would log into these Android
phones and then, do the scraping from there because they
couldn't do the scraping on the desktop.

That's never a problem we would have, and we would never
have to dedicate time to doing that because we work with
these open APIs. What does that mean? That means that we
focus all of our time on building these infrastructure layers that
| was talking about. We spend all of our time figuring out how
to actually scale the breadth of integrations. It'd be really, really
difficult for a company like Plaid or a company building HRIS to

go from 20 to 80 integrations in two weeks. But it's been pretty
easy for us to do this.

A lot of companies get grouped under this universal umbrella,
but really that's just the GTM skin on top. The actual unit you
need to look at is the actual technology, the actual way that
this data is being processed, the way that this data is extracted
because ultimately that tells you what these companies are
spending all of their time on.

For example, you can look at certain companies that seem like
they have this similar feature set to us who will give their
customers six-hour refresh windows for this data that they’re
sending to their data lake via ETL from a tool like Salesforce or
HubSpot. That doesn't make any sense for those kinds of tools
—HubSpot, for example, has rolling window rate limits where
you could be refreshing data continuously every hour faster for
a smaller account. Why would they have six-hour SLAs?

It makes sense because if you look at the other types of data
that they support and the other types of integrations, some of
them involve web scraping. Some involve companies with
much more rigorous rate limits because of the data that they
tend to house. So you end up building a pipeline or
infrastructure that isn't really optimal for the integration set that
you have. That's where | kind of make this distinction in my
mind, like unified API, that's not a mode. There's no mode
there. Everyone can go and build a unified API. The mode is
around how you actually pull this data and process it.

How does the proliferation of integrations companies like
Vessel affect CDP companies like Segment, ETL
companies like Fivetran and reverse ETL companies like
Census and Hightouch, a.k.a. third parties wholly
dedicated to helping data move between apps?

The answer to this really clarifies our unique perspective on
the market and our feelings about the integration space in
general. You've mentioned a couple of companies there—
Fivetran, Hightouch, Airbyte.

Let's talk about Airbyte, who are a fellow YC company. They've
started to push an embedded solution. There are other
companies out there like trigger.dev that started as workflows
that are starting to push embedded solutions. This goes back
to my entire point in my entire thesis, which is that the

technology itself isn't the differentiator. It's not about you
supporting an ETL solution. Building this infrastructure and
getting it right is really tricky. But our entire perspective is
around where and how these actual integrations are being
used, which is, is it a customer-facing integration or is it an
internal facing integration?

To us, that matters so much more than the way that data from
that downstream system is actually extracted, the type of
integration this is going to be and the type of data. Is this
something you have to do a lot of web scraping for? Is it a
walled garden or is this just product-facing? Is it just a product
integration?

That's where the actual type of company definition is coming
from. It's completely within our wheelhouse to support
something that looks like Fivetran and Airbyte where we're
ETL'ing that data directly to you because that's a use case you
might have for a customer-facing Salesforce integration.

The only requirement for us is, this is a use case you have for
a customer-facing product integration. In a way, it is a different
perspective on how to actually build an integration platform
and less so about this focus on the technology. “Is it a unified
API company? Is it an ETL company?”

No. It's a developer-first native integration platform for
customer-facing product integrations. That's the definition of
the company. It's not about doing ETL or having a unified API
or an actions API.

We do whatever you need us to do because we're building that
infrastructure. The integrations are the easy part for us to add
on. In a way, I've heard other companies use the term for
rippling, for example, compound startup. | think, in a way, we
sort of fall under that. Maybe that will help you conceptualize
exactly what we're doing and who we are.

In an easier way to say compound startup, | don't necessarily
view it that way because we're not intending to go into internal
integrations. But in a way we are compounding all of this
technology where it's like a company might have an Airbyte
solution. They might have a workload solution. They might
have a unified API. But we have all of that already for you. So
if you need product integrations where the buck ends here—

we have customer-facing product integrations— there's no
other solutions out there that you need to take on ever.

Would you say then you would never build what you call a
workflow integrations platform because even if it’s
customer-facing, it would not be developer-first? It would
be more for a no-code end user who's not a developer—
would that be accurate?

The only thing that’s certain in life is death and taxes, so |
won't ever say “never”, but in terms of what our actual strategy
is and where we view ourselves in the market, it would take a
tremendous change for us to actually consider building an
internal integrations platform or anything that faces internal
integrations.

If you're building something that needs to compete with your
competitors’ integrations, it needs to be maintained and built
by your developers. It needs to provide powerful APls. So an
internal workflow solution is something we could build, but if
we did step into that, we're talking a decade from now, or
however long for now.

There's so much more work to be done in the customer-facing
product integration space that we're going to be busy with this
for a while.

There's been a recent boom in universal APl companies. In
addition to Merge, Finch and Vessel, we have Rutter, Alloy,
Recall and a number of others. How do you explain the
boom? Why is it an attractive market to be in? How do you
see it shaking out?

One of the big differentiators between the two types of unified
APIs | was talking about is that one is about unlocking HRIS
and finance data, which wasn't accessible before. That creates
a different type of company where you can go to a lot of
companies that have probably never built this out and say,
"Look at this new thing that | have for you."

We're playing a totally different game over here. A lot of
companies have already built out a lot of the integrations that
we support at least before we had launched that new set of
integrations. So, our sell is just completely different. We come
to these companies and say,

"Hey! Look, you have an integration team with five people, but
you're not an integrations company. Integrations are just a
table stakes thing that you need. What if we just replace half of
that team? What if we supercharge it? What if we help you
make your integrations a more competitive advantage?”

That kind of thing ends up really changing the type of company
that you can go after.

Ultimately, the only reason that | think now is the time to build
a native integrations platform besides the rise in SaaS is also
this changing perspective on what it actually meant to build
integrations.

When we started a year ago, we were competing much more
heavily for a team that's like, "Should | build this? Should | use
you guys? | see the value of this, but also | can just build this
myself." That's not something you really have to deal with if
you're Plaid, unless it's someone who's really dedicated to
building these banking integrations. But that was a really
common problem for us.

What's really interesting is over the course of a year, we've
noticed that building in-house has become way less often. |
don't have specific metrics on this, it's just pure anecdotal, but
I'm sure if you ask a lot of other players in the space, they'll
say the same thing. Building in-house is just way less on the
table, way less common. It's not brought up as much. Now
we're just competing more often with companies that are
providing the same value as we are.

They're an iPaaS solution or a customer-facing iPaaS solution.
| think that those two things work in tandem. | don't have any
exact scientific evidence about correlation and causation, but
the rise in the number of SaaS applications. There's more
competition, people are being more competitive now and that
means you need more competitive features, including your
integrations. Integrations are just more important now because
of the number of tools that you have. It's like, "l need this data
to flow really seamlessly between if I'm ever going to consider
using your product.”

The fact that there are a lot of companies now solving this
problem to the point where it feels a lot like auth did a couple
years ago where it's like, "Well, I'm not even going to consider

building auth in-house. I'm just going to find which solution is
right for me."

It feels the same way right now for customer-facing
integrations platforms. All of those points are coming together
all at once right now to signal this wave of new integration
platforms. | really truly believe that maybe two, three years
from now, maybe even sooner, there's going to be a lot less
companies out there where you see raw API calls being made
from within their code base to a Salesforce unless it's really
important to them. You're going to see a Vessel in there and
that's the tool that they'd use the same way that you would for
an auth provider.

Function calling enables GPT to make API calls using
natural language. How will Al's ability to use APIs change
the nature of demand for APIls and products like Vessel?

In terms of products like Vessel, it will only increase the
demand. If | was building an internal-facing integrations
platform, | would probably be a little worried about OpenAl's
ability. The reason for that is, when you're executing a
workflow internally, you have a lot more leeway around errors.
You have the subject matter experts around what is actually
supposed to happen there, in your company, in the room ready
to go and debug, and figure things out.

For customer-facing integrations, you need that to work a
hundred percent of the time or else your customer is going to
be like, “What the heck is going on here? I'm just going to go to
someone else with a better integration.” So | don't see
anything like that ever being used for external customer-facing
integrations.

However, it is interesting because like you said, if you want
your data to be accessible within OpenAl, within some of these
bots for OpenAl, you need to have a public-facing API. So, |
totally see that there's a real chance this is going to drive more
demand for companies to start having external-facing APlIs.
That's already naturally happened.

The number of companies themselves that just support
external-facing APls, and there's a whole other conversation
we could have on this new genre of a company coming up
called developer like infrastructure experience or so. It’s
essentially around this idea of companies like Speakeasy and

Firm that are helping you build APls, just public APIs in
general.

So the counterpoint to the rise in integrations is the rise in
public-facing APls, which is fundamentally how customer-
facing integrations are built. How integrations are built is
through these APls.

So | totally see that there can be a rise in demand there, and a
lot of companies have started to focus more on their API for
this very reason where it's like, "l need access to that raw data
programmatically because finally | can do something useful
with it for the first time instead of having an internal team that
has to go and wrangle that and build something with it."

If everything goes right with Vessel over the next five
years, what does it become? How has the world changed?

The dream here would be to be in the same genre as those
other developer infrastructure products that you always hear
of.

No one ever considers building AWS unless they need their
own server racks or something like that. People are going to
use a cloud platform provider for their hosting solution. People
are going to use OAuth or some variant of that for their
authentication. A lot of people use Vercel for hosting.

The long-term vision for Vessel is that when you go to build
your first customer-facing integration, it's not about, "Well, let
me go pull up the Salesforce docs and figure out how to do
that." It's just as simple as using Vessel.

In the span of a couple minutes, you have it all set up. It's not
like, "Oh! Let's take two weeks to go and build a Salesforce
integration.” It just comes out of the box when you set up the
application to begin with. It's free to sign up—you can go
ahead and just play around with the APl in a couple minutes.

The other thing that is really interesting about this space is, we
are a public-facing APIl. We work with public-facing APls, but at
the end of the day, we're also a public-facing API ourselves.
One thing that's really interesting working with these native
integrations platforms is, they're some of the least pleasant
APls to work with. Because we work with so many APIs, we

just know which are nice to work with, which are bad to work
with.

If you're worried about the complexity of the API or setting
things up, you'd be very pleasantly surprised how quick it is to
set up something like Vessel. It takes about an hour at most,
on average, sometimes faster, and the APls have been built
over the past couple of years to really be developer-heavy.

Disclaimers

This transcript is for information purposes only and does not
constitute advice of any type or trade recommendation and
should not form the basis of any investment decision. Sacra
accepts no liability for the transcript or for any errors,
omissions or inaccuracies in respect of it. The views of the
experts expressed in the transcript are those of the experts
and they are not endorsed by, nor do they represent the
opinion of Sacra. Sacra reserves all copyright, intellectual
property rights in the transcript. Any modification, copying,
displaying, distributing, transmitting, publishing, licensing,
creating derivative works from, or selling any transcript is
strictly prohibited.

