
EXPERT INTERVIEW

Towaki Takikawa, CEO and co-
founder of Outerport, on the rise
of DevOps for LLMs

UPDATED
10/30/2024

TEAM

Jan-Erik Asplund
Co-Founder
jan@sacra.com

DISCLAIMERS

This report is for information purposes only and is not to be used or considered as an offer or the solicitation of an offer
to sell or to buy or subscribe for securities or other �nancial instruments. Nothing in this report constitutes investment,
legal, accounting or tax advice or a representation that any investment or strategy is suitable or appropriate to your
individual circumstances or otherwise constitutes a personal trade recommendation to you.

This research report has been prepared solely by Sacra and should not be considered a product of any person or entity
that makes such report available, if any.

Information and opinions presented in the sections of the report were obtained or derived from sources Sacra believes
are reliable, but Sacra makes no representation as to their accuracy or completeness. Past performance should not be
taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is
made regarding future performance. Information, opinions and estimates contained in this report re�ect a determination
at its original date of publication by Sacra and are subject to change without notice.

Sacra accepts no liability for loss arising from the use of the material presented in this report, except that this exclusion
of liability does not apply to the extent that liability arises under speci�c statutes or regulations applicable to Sacra. Sacra
may have issued, and may in the future issue, other reports that are inconsistent with, and reach different conclusions
from, the information presented in this report. Those reports re�ect different assumptions, views and analytical methods
of the analysts who prepared them and Sacra is under no obligation to ensure that such other reports are brought to the
attention of any recipient of this report.

All rights reserved. All material presented in this report, unless speci�cally indicated otherwise is under copyright to
Sacra. Sacra reserves any and all intellectual property rights in the report. All trademarks, service marks and logos used
in this report are trademarks or service marks or registered trademarks or service marks of Sacra. Any modi�cation,
copying, displaying, distributing, transmitting, publishing, licensing, creating derivative works from, or selling any report is
strictly prohibited. None of the material, nor its content, nor any copy of it, may be altered in any way, transmitted to,
copied or distributed to any other party, without the prior express written permission of Sacra. Any unauthorized
duplication, redistribution or disclosure of this report will result in prosecution.

www.sacra.com

mailto:jan@sacra.com
https://www.sacra.com/

Published on Oct 30th, 2024

Towaki Takikawa, CEO and co-

founder of Outerport, on the rise of

DevOps for LLMs

By Jan-Erik Asplund

Background
After speaking to Geoff Charles at Ramp ($295M annualized
revenue in 2023) and Mike Knoop at Zapier ($310M revenue in
2023) about the challenges of putting LLMs into production, we
reached out to Towaki Takikawa (ex-Nvidia), co-founder and
CEO at Outerport (YC S24), to talk about machine learning
operations (MLOps) in a multi-model environment.

Key points from our conversation via Sacra AI:

The MLOps landscape has evolved from targeting
researchers who preferred simple Python APIs and quick
setup (like Weights & Biases) to serving DevOps
professionals who need enterprise-grade telemetry,
monitoring and deployment tools that can handle high-
volume production workloads. "Previously, a big focus was
getting up and started very quickly. . . The people who use
Weights and Biases are more interested in the mathematics
than in DevOps. . . However, as MLOps moves from research

https://sacra.com/research/geoff-charles-ramp-ai/
https://sacra.com/c/ramp/
https://sacra.com/c/ramp/
https://sacra.com/research/mike-knoop-zapier-llm-chatgpt-openai/
https://sacra.com/c/zapier/
https://sacra.com/c/zapier/
https://sacra.com/t/mlops/
https://sacra.com/research/oscar-beijbom-ai-ml/?highlight=weights%20&%20biases#_bc40efc8-5c2e-5609-83e6-f8398a8e24a8
https://sacra.com/research/samiur-rahman-heyday-production-grade-ai-stack/
https://sacra.com/research/samiur-rahman-heyday-production-grade-ai-stack/

into more serious production environments, we're returning to
an era where organizations want to properly instrument their
LLM inference and training pipelines."
LLM deployment differs fundamentally from traditional
software deployment because models are massive files
(often 10-20GB) that must be loaded across CPU and GPU
memory, creating new technical challenges around
memory management, version control, and continuous
deployment that existing DevOps tools weren't built to
handle. Computer vision models previously used architectures
like ResNet, which was 170 megabytes. In contrast, a small 7-
billion parameter LLM today is approximately 17 gigabytes -
roughly 100 times larger. . . Instead of a typical Docker
container, which is typically expected to be less than 1
gigabyte, you suddenly have containers with 20-gigabyte
artifacts. . . Existing infrastructure update tools like Argo, Flux,
or Spinnaker aren't designed to handle extremely large files
with significant startup times.”
Building on microservices and serverless, compound AI
systems merge together multiple custom AI models, LLMs
and diffusion models with databases and external APIs—
spawning a new generation of tools like Outerport and
Modal ($32M raised) that let developers automatically
deploy and run multi-LLM systems across CPU/GPU
architectures without worrying about infrastructure. “[With]
compound AI systems (or agentic systems, workflows), instead
of running just one AI model, these systems involve multiple AI
models communicating with each other - similar to
microservice architectures for AI models. . . If model A takes a
minute to load, followed by model B taking another minute, the
entire pipeline becomes extremely expensive. . .This technical
challenge explains why we haven't seen widespread adoption
of these complex, compound AI systems that go beyond simple
API integration.“

Interview
What does Outerport do?

Outerport helps companies deploy AI models more efficiently
by solving a problem known as cold start. A significant
difference with AI models today compared to the past is their
size. For example, computer vision models previously used

https://sacra.com/research/kyle-corbitt-openpipe-fine-tuning-llms/

architectures like ResNet, which was 170 megabytes. In
contrast, a small 7-billion parameter (which means the model
is made up of 7 billion decimal numbers- or floats) LLM model
today is approximately 17 gigabytes - roughly 100 times larger.
This size increase creates numerous challenges. Instead of a
typical Docker container, which is typically expected to be less
than 1 gigabyte, you suddenly have containers with 20-
gigabyte artifacts. Many of the current challenges stem from
managing these large artifacts. Our software optimizes the
movement of these artifacts and integrates into existing
inference pipelines without requiring the installation of a
completely new inference system.

Could you provide more detail about the cold start
problem?

The cold start problem occurs when loading a model from disk
into a machine. The process requires first loading the model
from disk (or a remote object storage) into CPU memory and
then transferring it into GPU memory, which involves moving
large amounts of data. Even for a relatively small 15-gigabyte
large language model, this loading process can take up to a
minute.

The issue is particularly pronounced when working with cloud
GPUs, where the bandwidth between storage and CPU
memory is often limited - you're not going to be working with
state-of-the-art SSDs with super-fast transfer speeds.

As a result, end users must absorb the significant cost of
transferring the model from storage into CPU memory. What
we provide instead is a system to manage multiple model
weights in CPU memory, allowing users to quickly swap
different models in and out of their GPU- with advanced tricks
like page locking and parallel processing to speed things up
even further.

Are there specific types of architecture, companies, or use
cases where the cold start problem is particularly acute?

Any application that's latency-sensitive requires careful
consideration of cold starts. For example, when serving your
LLMs to customers, you might want to reduce cold starts to
deliver requests faster.

There's another important use case in development regarding
compound AI systems (or agentic systems, workflows). Instead
of running just one AI model, these systems involve multiple AI
models communicating with each other - similar to
microservice architectures for AI models. These systems might
include databases, external APIs, LLMs, and diffusion models
all working together.

When putting these components into a workflow, you face a
critical decision: either run these on separate GPU machines,
where your minimum GPU count scales with the number of
models, or run everything on a single machine. With a single
machine, the cold start issue becomes significant because
each model in the pipeline needs loading time. If model A takes
a minute to load, followed by model B taking another minute,
the entire pipeline becomes extremely expensive as you move
through multiple loading states. This technical challenge
explains why we haven't seen widespread adoption of these
complex, compound AI systems that go beyond simple API
integration.

What does it look like to solve the cold start problem both
before and after Outerport?

Prior to Outerport, people typically loaded their models from
object storage or local storage, which left many problems
unresolved. While some attempted to solve these issues by
writing a single script to load all models beforehand, this
created new challenges. Such a monolithic script requires
aligning all dependencies to load different models into one
place.

Instead, we wanted to create a microservice architecture with
multiple models that can coordinate with each other in a
distributed fashion. Outerport runs as a daemon process on
your machine, managing the models within its own container.
Communication occurs via gRPC, and the process handles all
memory management (storage, CPU and GPU) automatically.
The API itself is straightforward - rather than using traditional
Python commands like torch.load or safetensors.load, you
simply use outerport.load, which communicates with the
daemon to load the model. It can support multiple GPUs
allocated to multiple containers on a node.

Can you talk about your early customers and where your
message has resonated the most?

The work is primarily happening with companies developing
diffusion models for image generation right now. The diffusion
model community has strongly embraced compound AI
concepts, with ComfyUI being the prime example.

ComfyUI is an open-source project that allows users to chain
together node graphs of AI models. Since customizing diffusion
models is straightforward and provides quick visual results,
people are creating creative applications. For instance,
developers take screenshots from Nintendo 64 games to fine-
tune models that can reproduce the N64 aesthetic.

ComfyUI enables users to chain multiple AI models together in
creative ways. A pipeline might start with generating a
Nintendo 64-style image, connect it to an image segmentation
model that extracts objects of interest, and then combine these
elements with different backgrounds- which are generated by
yet another AI model.

These workflows typically involve multiple AI models, which
makes model hot-swapping times increasingly important for
users. While similar workflows with Large Language Models
(LLMs) are expected to develop over time, they haven't yet
reached the scale seen in diffusion model communities.

Are customers excited about Outerport because it saves
them money, or is it more about managing complexity and
improving the developer experience?

I would say it's much more about saving money, which also
happens to provide better end-user experience. When you set
up a node graph in Comfy UI, waiting one minute for a
generation to finish versus ten seconds simply because your
models loaded faster makes a significant difference.

This faster processing allows artists to make much quicker
iterations when using Comfy UI pipelines. The speed
advantage not only reduces GPU hours and associated costs
but also greatly improves the overall user experience. Latency
and cost are intertwined.

From a developer experience standpoint, when building
these tools and testing them on a local machine, the
processing time can be extremely long. Is the developer
experience an important consideration in this context?

That is definitely an important aspect because in machine
learning development, people often use Jupyter Notebooks as
an ad-hoc system for managing model weights.

One of the main reasons for using Jupyter Notebook is that
you can run code in individual cells and maintain that state
while continuing to program in separate cells. This allows you
to separate memory management from your actual
development.

However, this creates a problematic pipeline because if you
want to write a different program that uses that same memory
state, you cannot do that with Jupyter Notebook. Additionally,
Jupyter Notebook has issues with version control and
synchronizing with platforms like GitHub.

What we've done is extract the model loading component
entirely from that system. A different process manages it for
you, making the state persistent across multiple subsequent
process runs. This allows you to maintain state and use it
much more efficiently, similar to how you would in a Jupyter
Notebook, but without the technical debt associated with
notebooks.

Why do people use custom models?

Cost is a significant factor sinceAPI expenses can accumulate.
Quality is another crucial consideration - when building an
agent pipeline by connecting various APIs, you might discover
it doesn't effectively perform the intended automation at the
required precision. In such cases, your options are limited. You
can attempt to improve the prompts or provide better context
by retrieving more relevant documents, but if the model lacks
knowledge or capabilities about the specific task, there's little
you can do to resolve this limitation.

While OpenAI provides fine-tuning options, users still have
limited control. Recent research in model steering explores
manually tuning AI model parameters to achieve specific
behavioral outcomes. However, this requires full access to the

models rather than using closed black box systems. These
quality and cost considerations make custom models an
attractive option.
A recent analysis of enterprise LLM provider usage revealed
interesting patterns. While consumer space is dominated by
ChatGPT and Claude, enterprise adoption shows a different
distribution. ChatGPT and Claude combined account for only
34% of usage. Google's Gemini, Azure AI, and Amazon
Bedrock comprise approximately 42% of the market.

The remaining 20% consists of Cohere, Mistral, and Meta's
LLaMA - representing open-source and on-premises providers.
Despite being a new field seemingly dominated by ChatGPT
and Claude, most enterprise adoption comes from either
enterprise cloud providers or open-source/on-premises
models, suggesting a compelling indicator for future adoption
patterns in this space.

Can you discuss custom models in terms of security,
privacy, and on-premises deployment? Is Outerport part of
that ecosystem?

As a deployment platform, we need to address security
concerns such as end-to-end encryption of model weights.
There's also an emerging field called confidential computing
that's particularly relevant. In simple terms, confidential
computing uses a public key architecture for hardware - you
can encrypt your model so only specific GPUs can unlock it
and run it in a secure environment.

This means you can restrict model usage to designated
hardware components. The benefit is that even if someone
intercepts your model during transport, they cannot use it
without the private key embedded in the hardware.

Confidential computing is especially valuable when running
models on cloud infrastructure, as it operates in an encrypted
memory state. This prevents even those with access to the
cloud infrastructure from reading the model's operations.

These security features will be particularly important for
industries with high security requirements. The challenge lies
in implementing this end-to-end approach, from encrypted
storage through to deployment. While this isn't our current
focus, confidential computing capability already exists in the

latest NVIDIA GPUs, and its adoption will likely expand
significantly over the next 5-10 years.

One of the things you mentioned is that this kind of
problem might not be as acute for SaaS companies using
AI. At Ramp, they use multiple models - some smaller local
models, custom models, and GPT-4 for specific problems.
They optimize based on latency, cost, quality of output,
and the type of output they want to generate. Is this kind
of setup well suited for Outerport, or is it just that Ramp is
more sophisticated than your average SaaS company
using AI? Is this a different class of problem altogether?

While I'm not entirely familiar with Ramp's behind-the-scenes
operations, their system appears to be something that could
benefit from Outerport.

Based on what I've seen, most companies don't yet fully
understand the potential use cases for AI models. Obviously,
various startups are building workflows that involve complex AI
pipelines - beyond simple OpenAI API calls or chat interfaces -
by connecting multiple APIs and tools to accomplish tasks that
previously required human intervention. However, these
sophisticated implementations aren't widely developed in most
companies yet.

The need for specific infrastructure tooling hasn't been
completely realized, but this will likely change rapidly as
organizations begin to understand how to establish these
complicated pipelines.

To the extent that this is a problem that Outerport is
solving, why did you choose to address this particular
challenge among many others? What does solving this
problem enable you to accomplish for your customers?

A significant reason stems from my experience developing
apps using GPU infrastructure tools. These MLOps and ML
deployment tools allow you to deploy an API using your model.
However, when deploying these models, unless you have
constant usage of your service - which is uncommon in
enterprise settings - you face certain challenges. Many internal
tools run only once or twice a day.

Even in limited-use scenarios, these tools provide value. If a
task takes one person two hours to complete, and two people
in the company perform it daily, that's four hours saved per
day. This translates to 20 hours saved per week. Depending on
employee compensation, implementing this pipeline could
result in significant cost savings.

The main issue arises after deployment. Users often
experience substantial latency issues - it might take a full
minute just to initialize the pipeline before execution begins.
From both a user experience standpoint and a practical demo
perspective, this one-minute waiting period is problematic,
especially when presenting to prospective clients.

Why is this a good wedge problem to solve in terms of
helping solve other MLOps-type problems?

The central data structure for MLOps, especially moving
forward, is models.

This requires optimizing the entire pipeline from model training,
through checkpointing, to sending models to a central registry.
Organizations may need to run expensive offline evaluations
for compliance reasons before implementing continuous
deployment.

AI models specifically need tailored solutions because they're
fundamentally different from lightweight code or Docker
containers, for which solutions already exist. These models
represent a new type of data format that is exceptionally large,
demanding their own unique solutions and deployment
strategies.

Could you map out how you see the MLOps landscape?

Let me provide some context on how things have changed
over time.

There are roughly three stages in the lifecycle of an AI model.
The first stage is training, where you take a dataset and a
model initialized with random numbers, then train that model.

The second stage is deployment, where you put this model on
a GPU or CPU server and run it.

The third stage is fine-tuning, which typically happens last -
after you deploy a model, you improve it further using live data
collected from deployment.

This setup looked very different in the pre-foundation model
era when model sizes were small enough that companies
could feasibly train models from scratch.

During the training phase, companies could train their own
models overnight from a relatively small dataset of 1,000-
10,000 images to get reasonable results. Inference could run
easily on a GPU server or even a CPU server because the
model sizes were manageable.

That era was characterized by specialized models for specific
tasks. When I worked on computer vision for autonomous
driving, we wouldn't have one model driving the entire car.
Instead, we'd have separate models for detecting objects,
determining which pixels belonged to objects, and so on.
These models could be loaded into GPU memory or swapped
easily due to their small size.

Tooling from this era focused on training (like dataset
management or monitoring jobs) and inference on custom
models. Weights and Biases for metrics, MLFlow for artifact
storage, Kubernetes with KNative / KServe to serve them

Today, models are much more general purpose and training
models from scratch makes less sense because it's extremely
expensive.

Most companies take pre-trained models like Meta's LLaMA
and deploy them, then fine-tune as needed. Much of the
“training cost” has shifted to fine-tuning, though many
companies opt to use API services like OpenAI or Claude
instead - a significant change from the previous era where API
services weren't as prominent.

This shift occurred because model training is expensive, and
having a good training pipeline provides a competitive edge.
Deployment remains costly, and best practices for deploying
large models are still evolving, primarily due to their size. So
most people still tend to prototype using LLM APIs.

This means that lots of “MLOps” tooling today works at an API
level. Quality monitoring for LLM API calls, logging for LLM API
calls. Lots of value will be created from enabling “MLOps” for
ML on APIs especially for startups.

But what’s missing now, in our opinion, is tools that look like
the previous era of MLOps but specialized for the current era
for custom, self-hosted models. Being able to swap large files,
integrating with a wider variety of enterprise infrastructure (due
to the new-found flexibility of LLMs) and data sources, support
for lots of online inference through compound AI agents. These
are the sets of tools that Outerport is building.

For companies that aren't doing any training and just need
to deploy and fine-tune models, there are tools like Vellum.
Do you see this market segmenting based on how
extensively companies apply AI? Is this distinction
meaningful, or will these different approaches eventually
diverge or converge?

This is an interesting question without a clear trajectory.
There's going to be a lot of tooling that lets users orchestrate
APIs. Many agent builder tools, as mentioned, accomplish this
through features like DAG editors or graph editors - similar to
how Comfy UI works for image generation - allowing users to
orchestrate LLM calls and integrate different tools.

These tools will primarily target non-technical audiences. Many
companies are focusing on specific business units within
organizations, creating tools catered to their particular use
cases.

While these solutions will be widespread, enterprise
companies requiring custom-built solutions will likely adopt
lower-level deployment approaches, especially when they
need to maintain complete infrastructure ownership without
relying on third-party APIs.

For context, the previous era of MLOps tooling primarily
targeted ML researchers and engineers who typically came
from data science, math, or physics backgrounds rather than
pure systems or computer science.

Today, LLM use cases have grown so substantially that much
of the tooling needs to handle significant volume, leading to a

return to robust Kubernetes pipelines for LLM inference. As a
result, MLOps tooling is transitioning from serving researchers
to serving operations professionals.

How have you seen the tooling shift as part of that
change?

Previously, a big focus was getting up and started very quickly.
A good example of this is Weights and Biases, which has a
stronghold on researchers because it lets them write simple
Python APIs to log metrics into a dashboard they can view on
the web. The people who use Weights and Biases are more
interested in the mathematics than in DevOps.

If you ask an ops person how to log metrics, they would tell
you to set up OpenTelemetry, send metrics data into a time
series database, and set up a Grafana dashboard to view
those metrics in a standardized way.

However, if you tell an ML researcher the same thing, they'll
respond with "What is OpenTelemetry?" They view it as just
"engineering" and prefer having a simple tool they can quickly
implement, which Weights and Biases provides for research
purposes.

During the previous era, we saw many tools where the main
value proposition was the speed at which you could get
started. This had enterprise value because many companies
employing these researchers are big companies like Meta and
NVIDIA.

However, as MLOpsmoves from research into more serious
production environments, we're returning to an era where
organizations want to properly instrument their LLM inference
and training pipelines. This allows them to set up robust
dashboards that can handle large volumes of data without
crashing and with alerting.

We're moving back toward traditional DevOps tooling rather
than focusing solely on tools aimed at quick and easy setup.

When we talk about deployment and this DevOps-MLOps
analogy, do you think the comparison is particularly
accurate? Will we see the same categories and setup,
such as version control, continuous deployment,

containerization, orchestration, iPaaS, and PaaS? Or is it
more of a superficial analogy?
The analogy makes sense when comparing ML deployment to
traditional web app deployment, but the challenges are quite
different. While web apps involve deploying code, ML
deployment deals with much larger model artifacts. The
process more closely resembles deploying microservice
architecture than a standard app deployment.

In microservice architectures, you have systems running
multiple components that need to be updated individually
without causing downtime.

Tools like Argo and Flux help manage these updates gradually
rather than changing everything simultaneously, ensuring
users don't notice the transitions. These updates often involve
larger files than just code because you're building and shipping
containers to microservice clusters.

However, similar solutions don't exist for AI models today.
Deploying AI models without infrastructure disruptions or
complete docker container replacements remains challenging.

The existing infrastructure update tools like Argo, Flux, or
Spinnaker aren't designed to handle extremely large files with
significant startup times. These lengthy startup times require
more careful management when transferring infrastructure
from old to new versions.

Another challenge is working with heterogeneous hardware.
Models must be loaded into both CPU and GPU, meaning the
initialization phase isn't limited to storage. Models need to be
ready on the CPU before deployment or infrastructure
migration to new deployments can begin.

These unique challenges require solutions specifically
designed for ML deployment, including version control and
proper CI/CD pipelines. Rather than replacing Docker, we need
complementary solutions that work with Docker and
Kubernetes to enable live updates of AI models running on
existing infrastructure.

Is Outerport's expertise primarily focused on optimizing
CPU/GPU performance for large files? And does that

optimization help solve a horizontal range of deployment
problems?
We're specifically starting with CPU and GPU performance
optimization and implementing a daemon process that runs on
your GPU because this offers the fastest time to value. Even
without a complex setup, you can benefit from it - for example,
as an individual developer who doesn't want to wait for the
LLM to load every time you boot up your script. It serves as a
convenient tool that provides immediate value.

This approach is particularly interesting because when you
begin developing version control or continuous deployment
systems, you need a way to deploy onto a running server. A
key component of this deployment is the distributed system
daemon process that handles memory management. We
started here specifically because this component enables you
to handle requests from continuous deployment systems -
such as swapping in new models, preparing them in CPU
memory, and transferring them to GPU memory when the
inference process is ready.

To accomplish any of this functionality, we need the daemon
process running and managing memory and models. This
serves as the centerpiece of our infrastructure, from which we
can build out additional capabilities spanning from training to
deployment. We've chosen to start from the deployment end
and work our way backwards.

When considering your target customer, are you aiming to
sell to DevOps professionals or individual engineers? In
terms of go-to-market strategy, are you pursuing a self-
serve model where engineers might start using it on their
personal machines before bringing it into their
companies? Or are you focusing on top-down enterprise
sales, since larger companies currently show the most
interest in this technology?

The real answer, which is admittedly boring, is that we need to
do both. It has to be somewhat top-down because factors like
cost ultimately affect management-level people, and we need
their buy-in to sell these products to big enterprise companies.

However, if developers push back saying the product is
useless or incompatible with their stack, the implementation

will fail. Therefore, we need a setup that allows us to market
both to developers and to DevOps leaders such as CIOs.
There's an interesting dynamic regarding MLOps. As
mentioned earlier, MLOps is shifting from researchers and “AI
departments” (which may have different names within
companies) to broader implementation. A power struggle often
exists where MLOps originated in research, but DevOps teams
have begun taking ownership of certain aspects.

The responsibility for MLOps now varies by company -
sometimes falling under IT and infrastructure/DevOps
departments, other times under AI engineering departments.
Consequently, we must navigate and communicate value to
both audiences to secure buy-in from both sides.

Are the major AI companies like OpenAI and Anthropic,
along with cloud providers such as AWS and Azure,
potential customers for Outerport? Are they already
implementing similar systems internally to serve their
APIs?

Cloud providers are definitely implementing versions of this
approach. However, our main advantage compared to cloud
providers is being a third-party vendor, which means we're not
locked into a specific cloud platform.

Regarding companies like Anthropic and OpenAI - API provider
companies - we would love to work with them, especially since
they support features like fine-tuning. While I'm not familiar
with the exact details of their fine-tuning processes and
deployment methods, these companies face general
deployment challenges and have developed their own
solutions.

Our priority should be establishing best practices for model
deployment in a standardized way, followed by evangelism
efforts to spread this approach across companies for easier
adoption.

Is there a competing vision? There’s one perspective that
suggests there will be a single model to rule them all,
where the trajectory is that this current solution is nice but
temporary—more of a bridge solution rather than
something of long-term importance. The alternative view is

that multiple models will continue to serve different
purposes.
That is definitely a possible situation, but it's difficult to believe
it could happen for two main reasons.

First, AI models require scaling both data and model size to
improve, which means we need to find new data sources.
Currently, most companies are consuming internet content,
which is increasingly AI-generated.

Research on using synthetic data to train these models has
shown mixed results. Some findings suggest that continuing to
train with AI model outputs doesn't necessarily improve
performance - it might actually increase hallucinations and lead
to weird local minimums.

The second issue concerns costs. As AI models get bigger, the
cost of inference increases. In a future where huge models
dominate everything, running these models will be very
expensive - certainly more expensive than running smaller
models. This will likely create market segmentation.

There will be use cases where people will pay significant
money for extremely sophisticated models that can accurately
answer any question. However, many current applications
don't require such sophistication.

For example, when filling in metadata for product information,
such as determining the manufacturer of a McLaren from a
CSV file, language models are very effective at handling these
structured or non-regular inputs. These tasks don't require an
AI model with PhD-level knowledge - a smaller, more efficient
model works well.

There is also something to be said about how if you’re given
two models of the same size, the specialized one will always
perform better at a specialized task. This matters in scenarios
where you want to maximize performance and reliability; and
similar to how companies hire both generalists and specialists.

Regarding smaller models, API companies are unlikely to
maintain a stronghold due to cost considerations and the
thriving open-source community. We will certainly have high-
quality open-source AI models in the 7B parameter range and
below - smaller models that can run locally on a single GPU.

Looking in the opposite direction, is there a scenario
where microservices-style orchestration becomes
extremely granular, with countless small custom models?
In this case, would the models become so small that the
size problem essentially disappears?

That could be a possible universe.

In such a scenario, we would focus primarily on the actual
model deployments themselves. While we will definitely
continue to compress the models further, there's an important
consideration regarding computer architecture: compute power
is getting faster, allowing us to handle bigger models with
cheaper GPUs, but memory bandwidth isn't increasing at
nearly the same rate.

The growth in computer processing speed has significantly
outpaced memory speed, which creates an inherent
imbalance. This fundamental computer architecture bottleneck
means that figuring out how to efficiently load these models will
remain a crucial need in the long term.

Are new chips like those from Cerebras—which aren't
GPUs at all—potentially an existential threat to what you're
doing? How do you think about that?

As a third-party vendor, we can provide software support for
any type of hardware. There's a deployment consideration
where hardware has some kind of memory system that needs
to load the models, and we serve as a consistent interface
between models and loading them into various hardware
systems.

This is actually why we named our company Outerport - we act
as a consistent interface to GPU infrastructure and enterprise
infrastructure, including different types of custom hardware.

Another interesting use case involves edge devices, such as
security cameras running with custom hardware performing
image recognition. It's challenging to determine how to live-
update models running on edge hardware in remote locations.

This is a use case we're focusing on extensively since we're a
deployment platform aiming to deploy to any type of hardware,
regardless of location.

Can you discuss the current state of open source models?
Is this development fundamentally enabling the open
source model ecosystem? What does the development
stack look like for open source models, and are you
optimistic or pessimistic about the ecosystem's future?

I have high hopes for the ecosystem. To give some examples
of useful tools: vLLM is an excellent project for running
inference with LLMs efficiently. It's a runtime engine that
implements GPU-level optimizations for running LLM models
more effectively.

vLLM has gained significant user adoption because it's
relatively easy to get started with. There's a similar solution
from NVIDIA called TensorRT-LLM, which offers great
performance but is more complex to use compared to vLLM.

These types of projects are encouraging because they focus
on running open-source AI models cost-effectively on local
hardware. There is in general a thriving community of people
building local LLMs in communities like /r/LocalLLaMA on
Reddit.

Could you talk about what a gold standard ML ops pipeline
looks like? Since you work with many companies, what
does it look like when you see a company implementing
ML ops correctly?

To be completely honest, I haven't seen anything super
sophisticated in this space for the most part except at certain
companies with lots of resources.

The main issue is that we don't have standard tooling to handle
these tasks today. Most existing tools operate at the Python
level - typically Python libraries that make certain processes
more convenient than before. However, these tools aren't
really targeting reliability or infrastructure resilience, nor are
they trying to address a broad range of use cases. Lots of tools
do a lot of things decently well and not enough tools do one
thing really well.

This is very much an evolving ecosystem. Previously, the use
cases for ML and deep learning were more limited compared to
general computing platforms, such as serverless compute
platforms. However, now that LLMs and generative AI models

are permeating into different applications, we're starting to see
standard tooling develop around this area. Tools like vLLM
demonstrate this trend, but we're still far from achieving true
standardization and establishing sensible implementation
practices across the industry.
Is making Outerport an open source project important for
becoming a standard and winning hearts and minds?

We are considering making it open source. While it isn't open
source today, making it open source would benefit the
community much more. We need to strategize about this
decision further, as open source has traditionally been
sensitive in terms of co-existing with the commercial offering.

Can you discuss the developer experience and
deployment layers, particularly the MLOps infrastructure
that's emerging from cloud GPU companies? For example,
companies like Vercel partnering with CoreWeave, or
similar initiatives from AWS and other major cloud
providers?

Some really cool projects exist here, and one example I
particularly appreciate is Modal. Modal lets you mark certain
parts of your Python application to run on GPU, creating a nice
developer experience.

As a developer using these platforms, you don't have to think
too hard about where or on what hardware it runs - you can
simply mark it as GPU, and the parts that don't run locally will
execute on the cloud seamlessly.

This approach works well for smaller projects, but we'll likely
see more solutions that can run on your own hardware.
Organizations often prefer not to use third-party cloud
providers due to uncertainty about security practices. The next
evolution would be achieving a Modal-like experience that
works with your own hardware.

This progression mirrors how we evolved from monolithic
architecture to microservices, and then to serverless endpoints
that can scale independently. The current popular paradigm
involves working with multiple APIs, often internal ones,
backed by serverless architecture. Now we're seeing
developers who want to abstract away from thinking about
APIs altogether - they simply want to call a Python function

that automatically becomes a serverless implementation, which
is what Modal facilitates.
This new paradigm is particularly relevant for heterogeneous
computing environments involving CPU, GPU, cloud
resources, or more powerful CPUs elsewhere. However,
significant challenges remain, particularly around data access.
Local systems and cloud systems don't necessarily have
access to the same data, so establishing efficient data access
becomes a crucial problem. Despite these challenges, there's
considerable excitement around these newer, higher-level
paradigms of development.

If everything goes right for Outerport over the next 5
years, what does it become, and how has the world
changed as a result?

Our mission is to drive wider enterprise adoption of generative
AI by providing the infrastructure and tooling needed to
implement it in a resilient and bulletproof way. One way to
understand this is that we want to transform every company
into an API. It's interesting because what a company is, at its
core, is that it is a legal entity - in Japanese, this translates to
法⼈ or "legal person," which reflects its status as an entity with
rights similar to those of an individual. So why can’t we interact
with them in the same way we would as a human?

If we consider enterprise infrastructure as the brain of the
company and their data as their memory, we need to enable
interactions with companies in a human-like way.

Previously, the API interface to companies was essentially
humans - you would walk into a bank and talk to a person to
interact with that institution. This evolved into machines like
ATMs, then into SaaS solutions and web banking. Now we're
coming full circle, potentially creating autonomous units that
people interact with through AI-powered human-like
interfaces… or before we get there, through Python functions.

However, this transformation requires significant work. The
infrastructure needs to be both buildable and cost-effective.
There are numerous challenges, particularly in connecting
enterprise infrastructure with LLM infrastructure. This is where
traditional approaches like microservice architecture have
proven useful, and we need to extend these principles to AI
model deployments and infrastructure in general.

Disclaimers
This transcript is for information purposes only and does not
constitute advice of any type or trade recommendation and
should not form the basis of any investment decision. Sacra
accepts no liability for the transcript or for any errors,
omissions or inaccuracies in respect of it. The views of the
experts expressed in the transcript are those of the experts
and they are not endorsed by, nor do they represent the
opinion of Sacra. Sacra reserves all copyright, intellectual
property rights in the transcript. Any modification, copying,
displaying, distributing, transmitting, publishing, licensing,
creating derivative works from, or selling any transcript is
strictly prohibited.

