
EXPERT INTERVIEW

Thom Krupa, co-founder of
Bejamas, on building dynamic
apps on the Jamstack

UPDATED
03/11/2022

TEAM

Jan-Erik Asplund
Co-Founder
jan@sacra.com

DISCLAIMERS

This report is for information purposes only and is not to be used or considered as an offer or the solicitation of an offer
to sell or to buy or subscribe for securities or other �nancial instruments. Nothing in this report constitutes investment,
legal, accounting or tax advice or a representation that any investment or strategy is suitable or appropriate to your
individual circumstances or otherwise constitutes a personal trade recommendation to you.

This research report has been prepared solely by Sacra and should not be considered a product of any person or entity
that makes such report available, if any.

Information and opinions presented in the sections of the report were obtained or derived from sources Sacra believes
are reliable, but Sacra makes no representation as to their accuracy or completeness. Past performance should not be
taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is
made regarding future performance. Information, opinions and estimates contained in this report re�ect a determination
at its original date of publication by Sacra and are subject to change without notice.

Sacra accepts no liability for loss arising from the use of the material presented in this report, except that this exclusion
of liability does not apply to the extent that liability arises under speci�c statutes or regulations applicable to Sacra. Sacra
may have issued, and may in the future issue, other reports that are inconsistent with, and reach different conclusions
from, the information presented in this report. Those reports re�ect different assumptions, views and analytical methods
of the analysts who prepared them and Sacra is under no obligation to ensure that such other reports are brought to the
attention of any recipient of this report.

All rights reserved. All material presented in this report, unless speci�cally indicated otherwise is under copyright to
Sacra. Sacra reserves any and all intellectual property rights in the report. All trademarks, service marks and logos used
in this report are trademarks or service marks or registered trademarks or service marks of Sacra. Any modi�cation,
copying, displaying, distributing, transmitting, publishing, licensing, creating derivative works from, or selling any report is
strictly prohibited. None of the material, nor its content, nor any copy of it, may be altered in any way, transmitted to,
copied or distributed to any other party, without the prior express written permission of Sacra. Any unauthorized
duplication, redistribution or disclosure of this report will result in prosecution.

www.sacra.com

mailto:jan@sacra.com
https://www.sacra.com/


Published on Mar 11th, 2022

Thom Krupa, co-founder of

Bejamas, on building dynamic apps

on the Jamstack

By Jan-Erik Asplund

Background
Thom Krupa is the co-founder and CTO of Bejamas. We talked
to Thom because Bejamas is one of the biggest Jamstack
agencies in the world, and we wanted to learn more about the
practicality, use cases, and limitations of building with the
Jamstack for businesses.

Interview
I'd love to hear about how you got started with Jamstack 
and why you chose it to be the foundation for how the 
agency builds stuff.

We started Bejamas three years ago, and in the beginning, we
didn't know what Jamstack was. We -- Denis and I -- were just
very excited about static sites, Hugo and Gatsby. We didn't
know that the name for the whole thing was Jamstack. Once
we started digging into it and learning more about the tech and
other companies, we found Netlify and decided to position our



agency as a Jamstack agency. Basically, all we do is somehow
related to Jamstack. That's our core technology and message.
It wasn't just a marketing term. We found a lot of really exciting
solutions to the problems we had. Before Bejamas, I was a
front-end and WordPress developer, so I knew all the pain
points of WordPress, and to be blunt -- I didn't like it. So,
Jamstack was a cool alternative. That was just the beginning.

What were some of those problems that you saw as a 
front-end developer with WordPress? What were some of 
the biggest pain points?

I think the biggest pain points were performance and
maintenance. It was hard to finish the project and just forget
about it. You had to keep updating it, add different security
patches and stuff like that. Then, if the website and business
grew, you got more traffic, so you would need to upgrade your
servers to manage that. Websites are full of different plugins,
not every plugin gets updated, and not every plugin has a new
version. Some plugins just don't work with newer versions of
WordPress.

The big ecosystem of plugins and themes is a great idea, but
at the same time -- it's a bit painful. You have good themes and
bad themes, good plugins and bad plugins -- and that was not
an ideal situation in some projects.

How does working in a Jamstack methodology help? Let's 
say I don't know anything about Jamstack, and you're 
saying, “Let's build this on Jamstack.” What's your pitch 
for that?

I think that the most interesting thing about Jamstack is its
decoupled architecture. You don't have a monolithic
WordPress system. You don't have one server -- actually, it's
split backend and frontend. You have headless CMS -- for
example, Contentful, Storyblok, Dato CMS -- or even headless
WordPress is fine. You don't have to worry about scaling the
backend, because it's mostly an API endpoint. It's separated
from the frontend. If you want to build a website, it is run on
Netlify and with static files, you're no longer connected. Users
don't connect to the backend, they connect to the CDN, so the
CDN is very close to the user wherever you are. It's just easier
to scale, and it's cheaper, because CDNs are cheaper than
servers.



Also, it's more secure. Because you don't have any direct
connections from the user to the database, there's no security
risk -- it’s all static, pre-rendered on CDN. This solves a lot of
issues. You don't have to worry about backups, because every
build is a separate environment. If you want to reverse some
changes, you can publish some previous build just by one click
on Netlify.

What kinds of websites do you build on Jamstack, and are 
there kinds of projects that Jamstack isn't that great for? 
We've heard some people say really fully featured apps are 
maybe harder, but others say it's fine to build them on 
Vercel or Netlify.

We mostly build websites that are static by nature. For
example, landing pages, large corporate websites or large
blogs -- the kind of websites where content doesn't change too
often. We work on some marketing websites as well. We also
build apps. Jamstack is for apps as well. There are different
approaches to how you can build those apps these days. For
example, you can just build a static skeleton, and the user can
fetch data on the client's side and connect directly to APIs.

But that can be slow in some cases, since not every user has a
good internet connection. So it's much better to render this on
the server, at least the first view. If you enter some URL and hit
the “go” button, then you'll get a fast response from the server.
That can be done through the serverless functions, which both
Netlify and Vercel have. Vercel recently released a beta of
Edge Functions, which are even closer to the users. You can
build dynamic apps with a Jamstack approach, but without the
problems of having a single server.

Because the infrastructure has evolved, the term and the
definition of Jamstack are evolving as well. And the way we
build applications and websites is changing because of the
new versions of Next.js and new frameworks like Remix. Since
everything is so fresh, we are not sure if that's Jamstack or
that's not Jamstack, because Jamstack in general is an
umbrella term for a lot of things. But, it is possible to build fully
featured, very dynamic applications in a modern Jamstack
way.

I want to understand edge functions better. It seems like 
it's run off of CDNs, but CDNs previously were, as I 



understand it, just for delivering static content, so this 
brings a dynamic element. Could you explain that?
Yeah, that's a good starting point. CDNs used to be just for
serving content. You couldn't actually execute any code on
CDN. If you have serverless functions, it usually means that
there is a location -- maybe in Europe, maybe in the US -- but
it's usually one location. Unless you're an Enterprise, in which
case you could have multiple locations -- but at a higher cost.
For example, Vercel has this feature but only available in their
Enterprise account. Needless to say, it's not for everyone.
Usually it's just only one location, and it can be slow because
you can't be fast everywhere.

But edge is the opposite. You can run code and run functions
on the CDN. Cloudflare Workers is a good example of edge
functions. Actually, Vercel uses Cloudflare under the hood too.
With edge, you can be fast everywhere, execute some code,
render HTML and pages for every user. It can be highly
dynamic and very scalable.

Do you reach a point on your projects where, in terms of 
performance and scalability, it's better for you to move off 
of Vercel or Netlify and onto AWS or Cloudflare? Or do you 
see that it could happen, but not at that scale usually?

No, we don't have such situations. Both Netlify and Vercel are
very scalable. Basically, there are no limits on how big your
app can be, because they both run on top of AWS or Azure and
other bigger services like those. Usually if you want to switch,
it's because of a specific feature -- maybe pricing, maybe you
have better deal -- but it's not about limitations of the platform
itself, like executions, bandwidth or stuff like that.

We've heard people talk about why you might switch on 
the feature side, and I'm curious what are some of the 
places where you might want that extra control or extra 
customization that comes from switching to AWS?

Maybe you want to switch from Vercel to AWS if you want to
use some other product of AWS, like machine learning. AWS
has a lot of products from audio, video, and if you want to keep
your full stack on AWS -- if you want to have only one platform,
only one provider -- those are situations where we've seen
some companies prefer to be on AWS -- “Okay, we want to
have everything on Amazon, because that's our policy and



because we already use some products of AWS. So we want
to, for example, use S3 and CloudFront as CDN, because
that's how we do this.” It's very hard to compete with AWS on
products. They have basically everything.
But Vercel competes, I think, on user experience, on developer
experience. It's much easier to start on Vercel, and you don't
have to worry about some bad configuration or pricing.
Sometimes if you do something wrong on AWS, you can have
a very unexpected bill.

Say a client says they want to do everything on Amazon or 
CloudFlare. For you, how much time or expense -- or both 
-- does that add, and how big of a downgrade in 
experience would that be from using your more preferred 
process?

I think the closest you can have on AWS to Vercel or Netlify is
AWS Amplify. Basically, they want to have similar features, so
it is CI/CD -- you can just connect your repository, build an app
and deploy it to a CDN. I think that would be our preferred way,
using Amplify.

If the client wants to have a very custom setup for whatever
reason, then it would add some time: first to create all of this
and second to maintain this. If something changes in our stack,
we have to be sure that it'll work, so we need to have a person
who really understands AWS and all those details about
configuration and maintenance.

Do you have a preference between Vercel and Netlify, or 
how do you think about that?

As a company, we don't really have preferences. We are
partners with both of them. 

I can't say Vercel is better because I like it better. There are
some differences: for example, how Vercel supports Next.js.
Both products are created and maintained by Vercel in the
company, so it's a smooth experience. 

They have some smaller features, like analytics, that are
different in how they work. It really depends on client
requirements and expectations. In some cases, we
recommend Vercel and in some cases Netlify, but both are
really, really good products.



I'm curious if, as far as APIs go, there are ones that you 
will always recommend. Obviously, you work with a bunch 
of headless CMS partners, but do you have certain ones -- 
say, around authentication or search -- that you always 
use, or do you not care as long as it works for a particular 
project?

There's no one thing we always use, but there are some things
we use more often in projects. 

For search, it'll be Algolia, because it's just easy to develop
things using Algolia. They have a lot of good documentation
and so on. 

For authentication, Auth0 is okay. Netlify Identity, it's okay in
some cases. It really depends on the requirements and on the
project. 

But yeah, there are some things we use more and some things
we use less.

One thing that we've heard is developers really like Next.js 
and Vercel because you don't have to learn any DevOps. 
I'm curious if, as a result of that, you're seeing more front-
end developers who don't know the backend at all doing 
this work. If so, is there any potential problem with that?

I think that these days the front-end developer is really
powerful. 

The front-end developer becomes a full stack developer,
because it's very easy to build an app using some managed
back ends and managed database, like, for example, Firebase
or FaunaDB. You don't really have to know very advanced
back-end stuff to build an app. Of course, if you want to be a
really good back-end developer and build custom backends,
then I think it's not a job for a front-end developer. You need
both of them, because a good back-end developer usually is
not a very good front-end developer, and vice versa. 

But the front-end developer these days can build a really
powerful backend because of the tools we have -- the
Jamstack ecosystem and all those different SaaS products that
focus on really good developer experience.



I don't think that's a problem. I think that's an opportunity for
front-end developers and for agencies like ours. We are mostly
front-end developers, but we can build apps and we can build
back-ends. For me, it's an opportunity and a way to build really
powerful and fast experiences in products and apps.

Speed is something that comes up a lot, as well as stuff 
like Core Web Vitals. It seems like performance is really a 
key factor and key trend with Google and SEO. Could you 
say a little more about the importance of speed and 
performance, and why that's so important?

I think that's important for a few reasons. 

First is a business reason. If your website is slow, you are
simply losing your customers, because people don't want to
wait for page. If something is slow, they will just leave your
website. So that's an opportunity to provide a really smooth
user experience and create a product that people really like,
recommend to friends, and return to. Performance is just one
part of UX. Core Web Vitals actually focus on general user
experience. It's about how smooth your website is, if it's not
clunky, if the content stays and doesn’t jump for whatever
reason.

I think the second reason is because of the cost. If your
website is fast, you don't have such a high cost for the server,
because if everything is faster, then you need less power to
execute all of this. It’s obvious, but if you do less, then you pay
less. That's a win. Another reason why we like fast websites
and fast apps is the environmental side. If you have a faster
website, it will produce less carbon footprint. 

Those three reasons are the most important for us. The user
experience is definitely number one. If you can improve this,
basically everything else will be better as well. Like A/B testing
-- if it's faster, then it can be more accurate, because you are
eliminating the factor of speed.

You mentioned AWS Amplify, and I'm curious about other 
ways that you've seen traditional cloud providers like 
Amazon adapt to Jamstack, either with new products or 
otherwise.



Microsoft released Static Web Apps as part of Azure. It's
similar to Amplify. I think that's their answer to Netlify and
Vercel. Basically, they do a very similar thing, but it's 100% on
Azure. You can connect to your repository, build the app and
deploy to a CDN. But I think it's not that powerful yet. They
don't have that many features, but they're working on it and
releasing new features pretty fast.

In the case of Google, I don't think they use something similar.
You can for sure build this, because the Google Cloud platform
is powerful, but they don't have anything out of the box. I think
Firebase would be the closest, but it's not the same, really.

Do you see companies staying on Amazon but moving to a 
Jamstack setup via Amplify, or similarly on Azure going to 
Static Web Apps? And are you seeing new companies 
start out on these platforms, or is it mostly on Vercel and 
Netlify?

From our experience, the most popular are definitely Netlify
and Vercel. We don't have a lot of cases where we are forced
to use AWS or Azure. I'm not sure how it looks like in general,
but that has been our experience. In some cases, we have
even migrated from Amazon to Netlify. But the other way, not
yet.

One sense we have is that big companies may be unlikely 
to switch from Amazon to Vercel or Netlify because of 
perceived risk -- for instance, you’re not going to get fired 
for using AWS. Do you see that, or are people pretty 
comfortable that Vercel and Netlify are big names and that 
there’s not much risk attached to them?

What we see in our case is big companies -- like enterprise
companies -- will try out Jamstack on some kind of pivot
project, like “Okay, let's do something small and just test how it
works. Is it sufficient? Does it work for us?” We don't really see
big migration, like “Okay, let's do everything on Vercel.” I think
the approach is to try how it works and maybe then create new
projects on this platform.

I think that enterprise adoption on Vercel and Netlify is
growing, for sure. We see a lot of enterprise deals. But I
wouldn't say it's like, “We have to move from Amazon this year”



or something like that. I think big companies like to split the
risk and just try something small and see what happens.
So it's more likely that they would just use the two side-
by-side, and they would potentially serve two different 
purposes, like Vercel and Netlify for starting new projects 
and then migrating over time to AWS if necessary.

Exactly. Or the other way. Maybe they decide Vercel is better
because of the support. I don't think AWS has good support,
unless you're really, really big. Because those companies are a
bit smaller, I think they can provide better support than big
players.

We spoke about pricing briefly earlier, but I’m curious for 
your thoughts on how Vercel’s pricing scheme works and 
also how it compares to Amazon’s pricing. We saw a graph 
that indicated that, once you’re above ten -- or some 
relatively low number -- of developers on Vercel, the 
pricing gets dramatically more expensive.

I know they are experimenting with the pricing. There used to
be a very large gap between the Pro Plan and the plan if you
had more than ten developers -- the switch was pretty big.
Personally, I think they can be flexible. If you need one more
developer, I think that would be fine. But since most of these
platforms are built on top of something like AWS, it doesn’t
make sense for them to be cheaper than AWS. If they were
cheaper, it means that maybe they have AWS for free or
something, and that's likely not the case.

So what a company does is outsource the maintenance. You
are paying for being free of DevOps and to have people who
take care of the infrastructure and the support. That's
something. If you want to have everything on AWS, you will
need to hire some person who does this or does Vercel for
you.

Generally speaking, I think the Jamstack approach is cheaper,
especially at a large scale. The scaling is cheaper because of
the CDNs, and serverless is becoming cheaper and cheaper
too.

We've been talking about how Jamstack is changing, and 
how the concept of it is becoming a little blurred with the 
edge and all that. I’m curious to hear your thoughts on 



where it's going in the next five or ten years. What does 
that change look like, and what trends are important?
I think the biggest trend right now is the edge, it’s already very
powerful. Personally, I think that we will see more edge
databases. You could have the whole stack running at the
edge. And Vercel and Netlify for sure have plans: Netlify has
Edge Handlers, Vercel has Edge Functions. They're invested in
this direction. I think that will be the next phase of Jamstack’s
evolution.

We see new frameworks, like Remix for example. That
framework focuses on running at the edge, and they don't have
static side generation. Instead you can render everything on
request. It's kind of back to basics but with that twist of the
Edge.

So the general trend I think will be edge and really fast code
execution, globally. We've seen that it makes sense to push
everything to CDNs because it's much faster and cheaper, but
that used to be static. If that can be dynamic, it means that,
“Okay, we can not only host static fast, but actually we can
execute code.” So we don't really have to worry about the
building problem, like big building times, because we can
actually run on the edge. I think that will be the next big thing.

Disclaimers
This transcript is for information purposes only and does not
constitute advice of any type or trade recommendation and
should not form the basis of any investment decision. Sacra
accepts no liability for the transcript or for any errors,
omissions or inaccuracies in respect of it. The views of the
experts expressed in the transcript are those of the experts
and they are not endorsed by, nor do they represent the
opinion of Sacra. Sacra reserves all copyright, intellectual
property rights in the transcript. Any modification, copying,
displaying, distributing, transmitting, publishing, licensing,
creating derivative works from, or selling any transcript is
strictly prohibited.


