P

SACRA

EXPERT INTERVIEW UPDATED
02/02/2023

Ravi1 Parikh, CEO of Airplane, on
building an end-to-end internal
tools platform

TEAM

Jan-Erik Asplund
Co-Founder
jan@sacra.com

DISCLAIMERS

This report is for information purposes only and is not to be used or considered as an offer or the solicitation of an offer
to sell or to buy or subscribe for securities or other financial instruments. Nothing in this report constitutes investment,
legal, accounting or tax advice or a representation that any investment or strategy is suitable or appropriate to your
individual circumstances or otherwise constitutes a personal trade recommendation to you.

This research report has been prepared solely by Sacra and should not be considered a product of any person or entity
that makes such report available, if any.

Information and opinions presented in the sections of the report were obtained or derived from sources Sacra believes
are reliable, but Sacra makes no representation as to their accuracy or completeness. Past performance should not be
taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is
made regarding future performance. Information, opinions and estimates contained in this report reflect a determination
at its original date of publication by Sacra and are subject to change without notice.

Sacra accepts no liability for loss arising from the use of the material presented in this report, except that this exclusion
of liability does not apply to the extent that liability arises under specific statutes or regulations applicable to Sacra. Sacra
may have issued, and may in the future issue, other reports that are inconsistent with, and reach different conclusions
from, the information presented in this report. Those reports reflect different assumptions, views and analytical methods
of the analysts who prepared them and Sacra is under no obligation to ensure that such other reports are brought to the
attention of any recipient of this report.

All rights reserved. All material presented in this report, unless specifically indicated otherwise is under copyright to
Sacra. Sacra reserves any and all intellectual property rights in the report. All trademarks, service marks and logos used
in this report are trademarks or service marks or registered trademarks or service marks of Sacra. Any modification,
copying, displaying, distributing, transmitting, publishing, licensing, creating derivative works from, or selling any report is
strictly prohibited. None of the material, nor its content, nor any copy of it, may be altered in any way, transmitted to,
copied or distributed to any other party, without the prior express written permission of Sacra. Any unauthorized
duplication, redistribution or disclosure of this report will result in prosecution.

WWW.SacCra.com

mailto:jan@sacra.com
https://www.sacra.com/

Published on Feb 02nd, 2023

Ravi Parikh, CEO of Airplane, on
building an end-to-end internal
tools platform

By Walter Chen

EXPERT INTERVIEW

Ravi

Parikh

Co-Founder & CEO
Airplane

Background

Ravi Parikh is the CEO of Airplane. We talked to Ravi to learn
more about the business model of the "PaaS for internal tools"
ala Retool and Appsmith and how these players differentiate
from each other.

Interview

You previously co-founded the analytics company Heap.
Could you tell us what inspired you to start Airplane?

| co-founded Heap in 2013. I'm an engineer by background, so
| spent the first couple years of Heap building out the product.
Heap is an analytics product—web analytics and mobile
analytics. As we scaled up the company, | actually mostly
focused on go-to-market. | built our sales team, customer
success, marketing, solutions, and engineering teams for most
of my time at Heap.

There are lots of things | found that happen in the course of
serving a customer that are very complicated to resolve.

For example, a customer might implement the Heap API
wrong, and then there's a bunch of messed up data in their
account. Someone on our end would have to go in and delete
all that data or run some script that fixes things. These kinds of
one-off manual operations to serve our customers would come
up a lot.

Usually, in such cases, what would end up happening is that
they would reach out to our support or success team. Then,
someone from there would have to escalate to engineering.

Someone from engineering would have to get involved, run
some script, and then supervise that script for the next two
hours—because it's very data-intensive—and then wait for that
to complete.

This interrupt-heavy pattern of serving customers was
increasingly common as we grew.

We had various attempts to try and build better internal tooling.
We built this Slack bot that you could use to run some basic
commands, but these kinds of systems were always breaking
and never were a complete solution. There was also a long tail
of one-off scripts that was being used to solve problems. That
was the status quo at Heap.

We actually bought Retool at one point, but Retool was mostly
not used to solve those problems. We weren’t able to use it for
solving these more script-heavy, workflow-heavy, problems
because it was just a Ul builder.

| left Heap in 2020 when the company was about 200 people,
and | spent some time thinking about what | wanted to do next.
| was brainstorming ideas with a friend of mine, Josh, who's
now my co-founder at Airplane.

Josh’s journey was similar to mine. He was CTO of a company
called Benchling, which is a life sciences SaaS company. We
realized we had the same set of problems, and Benchling also
had found itself dealing with all of these kinds of internal one-
off operations that would hit the engineering team.

The initial insight was, “There's a lot of engineering time that
goes into being interrupted by other teams to solve one-off
issues or building platforms to help teams solve their own
issues, i.e. internal tools. The patterns that come up over and
over again across all these companies look similar.”

We thought we could build a platform or framework to allow
you to build a lot of this stuff a lot more quickly.

The initial version of Airplane was really, really simple.
Basically, we’d let you take a script—Ilike a Python script that
does some internal operation—and deploy it to our platform.
We’'d handle putting a Ul in front of it, role-based permissions,
auditing, and notifications.

These were really basic considerations that were part of why it
was hard to take engineering-only operations and share them
with non-engineers within Heap and Benchling. That was the
initial idea—just script to app. That's what we launched with in
mid-2021, and really mostly what the product was for nearly a
year after that. Now, we've built out a lot more additional
features to help build internal tools, though it took us a while to
get there.

Could you talk about what your initial product-market fit
looked like? What's been surprising about the core initial
users and use cases that you've found?

We got pretty strong initial traction with just that scripts-to-apps
idea. We launched it on Hacker News, Product Hunt, and
immediately got a decent amount of interest with people
signing up for the product. | think the willingness to pay wasn't
quite there. We did close a couple larger enterprise contracts
here and there, but for the most part, people saw Airplane—as
it was then—as one small component of internal tooling that
didn't really stand on its own.

Here’s what would happen. Let's say you have a data deletion
script and you want to model that in Airplane. You might use
Airplane to create a web form that takes in a single “user ID”
parameter and kicks off this script. The problem is, you can't
really just have that in isolation. The typical support workflow is
you're going to want to look up the user first, maybe based on
a keyword search or a username. Then, you're going to see a
couple rows in the database that match, click on one of the

users, grab their ID, and kick off the script to actually do the
deletion. There's this read/diagnose phase before you do a
write operation.

What people would end up doing is that they would use
Airplane and then they would also use Retool or an in-house
tool to have direct access to the database.

They’d copy-paste across tools, so Airplane didn't stand on its
own—in the sense that the specific workflow that would
happen for a support person or an ops person didn't fully live
within Airplane. That was confusing for a lot of end users.

We ended up having to build a way to let users read and
explore data as well, which we call Views, and which competes
more directly with tools like Retool or Appsmith.

You can use Airplane as an end-to-end internal tooling
platform. That's pretty recent, maybe seven, eight months ago
that we've really made that available to people. Since then, we
have seen a significant uptick in our ability to close larger
agreements.

Airplane initially focused on replacing one-off scripts. Why
did you go after one-off scripts as the wedge? What did
that get you in terms of adoption inside the org?

| think it was the right order of operations. The scripts aspect
was really unique. It was something you could not do with any
other platform. There’s one tool called Rundeck, owned by
PagerDuty now, that is similar to what we do. But there's not
another thing out there that does the exact same thing as
Airplane.

Even Rundeck is really meant for DevOps / SRE type
workflows. It's not quite the same. It's a much older product, so
it doesn't take advantage of a lot of really modern stuff, like
serverless patterns, that make Airplane a lot simpler to set up.
That unique hook was really appealing to people.

Even if it wasn't a complete solution, it was a compelling hook.
It drove a lot of interest, a lot of sighups. For some companies,
it did represent a big swath of their internal tooling and strong

economic value. We did close a lot of our initial customers for

whom this was a burning hot pain point. But we expanded our
TAM significantly once we added Views.

Can you talk about how a developer (your customer)
thinks about using Airplane vs building a React app vs
buying an off-the-shelf SaaS for a particular internal tool?

For the latter things like off-the-shelf SaaS, the vast majority of
use cases that people use Airplane for, or at least the ones that
come to us and use Airplane, there's usually no off-the-shelf
SaaS that would just do it.

No one's building a CRM in Airplane, for the most part. It's
mostly bespoke things like, "l need to build this internal admin
panel that does these really specific read and write operations
against our production database." If you were using Django,
maybe you could use Django Admin, or if you're using Rails,
you could use Active Admin. But if you're not using one of
those specific web frameworks, there's no off-the-shelf SaaS
that just does that for you.

In terms of build versus buy essentially, that is the primary
thing that people are usually evaluating with Airplane. It's not
actually like Airplane versus Retool. Ninety percent of the time
it's, "Either we're going to use Airplane for this or we're
probably going to build this in-house."

The way we navigate that is, Airplane is pretty different from
most of the other products in this internal tooling space, in that
we're not a low-code, no-code solution. Airplane is entirely a
code-based product.

So, if you're saying, "l really want to have a lot of control over
this and | want to use React to build the front-end," you can
actually just do that in Airplane. We give you a component
library, the state management system, and a bunch of built-ins
that make it easy to build internal tools. But you’re still writing
React code, at the end of the day, if you’re building a view on
Airplane.

We like to think that using Airplane lets you have your cake
and eat it, too. You can take advantage of all the niceties that
Airplane gives you out of the box in terms of handling
permissions and notifications etc. that will accelerate your time
to development, while at the same time getting all source
control benefits of code. Airplane's fully extensible. You can
import your own private libraries or third-party libraries, so you
don't have to make that trade-off.

When people look at Airplane versus in-house and still choose
to go with in-house, there's usually one of two reasons.

First is, they've already built it. They're like, "Well, we have this
legacy system. We know we want to overhaul it. Airplane
seems neat, but we don't really want to rebuild from scratch.
We'll just incrementally build on this thing we've already done,"
which is fair and | think that's fine.

Second might be, there's something highly bespoke they want
to do which is probably going to be more trouble than it's worth
in Airplane. If the Ul you want to build internally is really
specific, and you're not going to take advantage of our
component library at all, then, Airplane's not really giving you
that much value. But that's really rare. There's some tables,
charts, maps, graphs, some form fields, and buttons and they
look the same. That's the Retool thesis as well. But
occasionally, someone will have some really specific needs.
That’s when I'll be like, "Yeah, maybe just build that in-house.
That seems fine."

Airplane leads more with code than a point-and-click Ul
builder. Why is that? How does your design philosophy
help balance power, flexibility vs. off-the-shelf
components that save developers time?

We do get a wide spectrum of feedback on the way Airplane
works. While obviously this is a biased viewpoint, we actually
think Airplane is the fastest way to build these things. We don't
think there's a trade-off if you're a developer. The actual trade-
off we’ve made is, if you're not a developer, then you can't use
Airplane.

Whereas, with Retool, | know that there are the non-
developers or the SQL savvy who can drag and drop some
things, hook it up with some queries, and get some value out
of it. You can't really do that with Airplane. That is a real trade-
off we've made. But if you are a developer, even if you're not a
React dev, and you know how code works, our belief is that
Airplane is faster. We have heard that from people as well.

That being said, not everyone believes that. Some people will
look at our docs, they'll glance at the Retool docs, and they!'ll
be, "Intuitively, Retool feels simpler. I'm not a React dev. I'm a
backend dev. | don't want to learn React. Airplane seems a

little bit intimidating." To those people, we usually just say, "Go
through our 15-minute Getting Started guide and tell me if it
feels slower or faster."

Some people will be like, "Look, I'm not a React dev, and |
went through the Airplane Getting Started guide, and actually,
it felt really easy." That's because a lot of things that make
React and front-end web dev hard are things that involve the
emergent complexity from building complex web apps. You're
not really building all that complex stuff in something like
Airplane. All the state management is really simple. As a result
of that, we can enable quite a bit of speed.

Our script-based approach also leads to a huge speed boost
for developers. Scripts are the fastest ways to solve a problem
for a developer. Write a script, deploy it to Airplane and we'll
auto generate the Ul, the notifications, permissions, the audit
logging etc. It actually is significantly faster than having to put
that same code into some API endpoint and build a little bit of
Ul in Retool and have it hit that APIl. But we do sometimes get
that reaction to work where intuitively it feels like writing code
will be work. So, we have to thread the needle a little from a
messaging perspective.

Then, you also get people saying, "l already know React. This
seems really fast." You can get both reactions.

Airplane monetizes on a per seat basis for any user or
creator of an Airplane app. Do you have any plans to
differentiate between users and creators? Do you have
any usage component to pricing in your enterprise tier?

We, like Retool or some of the others in this space, just do
naive seat-based pricing. There's no distinction between types
of seats.

There’s certainly pushback we get where people will say, "If I'm
going to roll this out to my whole org, there's going to be teams
that use it less than others. There'll be teams that are creating
versus those that are just consuming. There are people | just
want to view stuff; | don't even want them to run any write-
based operations. Why do | pay the same for all of them?"

The way we've solved this for now—it's not a permanent
solution—is just that the seats are really cheap. It's $10 for our

Team plan. On our Enterprise plan, I'm not going to say what it
is, but it's way lower than all of our competitors.

We're not trying to use cheap as a lever to win deals and like |
mentioned earlier, 90% of our deals are build versus buy. It's
more, just that at our current stage, we're closing business fast
enough that we're not trying to squeeze every dollar out of
every customer.

Heap initially had a generous free tier. But once we started
scaling sales, we really nerfed the free tier and started
monetizing aggressively, and | think that was a big mistake.
Amplitude did not do that. Our organic sign-ups at Heap were
climbing steadily over time and then, we made that change—
they kept climbing for a little bit but then, they leveled off. We
just killed that word of mouth effect without knowing that we
had killed it at the time. Our revenue did skyrocket, because
we started really pricing the product more effectively. But it
killed the golden goose a little bit from those free leads we
were getting.

It's a deliberate strategy to be like, “Let's leave some consumer
surplus on the table, not unnecessarily, but let's just optimize
for getting deals done quickly, getting good logos, good case
studies, good reference customers, and getting people who are
going to love the product and tell their five friends.” That's
more the strategy right now. We've sidestepped the issue.

In a more medium- to long-term sense, there probably will be
some sort of usage-based component to Airplane's pricing
partially because the use cases for Airplane are a little different
from a Retool or something like that. It's a purely Ul-based
tool. So, you have like 25 or 100 support agents and that's who
you monetize on.

For Airplane, there's a lot of usage of Airplane that isn't really
user-based usage. A lot of people use Airplane for scheduled
operations. There's not a seat concept that really makes a
whole lot of sense if you're running a schedule. But if you're
running 100,000 instances of a scheduled job every week, that
should be monetized in some sense. Right now, it's not being
done. There's actually people who have like five seat accounts
that are getting massive amounts of value in compute for free.
That is something we have to fix, but that's how we've done it
for now.

How do you think about Airplane's positioning vs. Retool?
Retool looks more positioned as a SaaS whereas Airplane
looks like a PaaS. What are the relative merits and
drawbacks of each approach?

So, we have a very self-selected audience of people and our
acquisition strategy is all inbound for now. | mean, 10% of the
time it is versus Retool but most of the time, they're like,
"We've seen Retool before," or, "We've used it in the past,” or,
"Used it in my last company,” and decided not to use it already
before ever talking to us.

The reason they don’t use Retool sometimes is related to a
lack of functionality. We have the scripts and that's unique. But
a lot more of the time it's due to the way Retool's built. We'll
talk to a lot of people who will be like, "Hey! I'm not really into
all the low-code, no-code stuff. We were going to build this
internal tool in-house, that was going to be the preferred way
to do it. Then, | came across Airplane and realized, this
actually might be a best-of-both-worlds sort of thing." So, we
get a lot of people who really resonate with Airplane’s
philosophy.

There's a customer of ours that we closed a month ago where
a couple months before that he had tweeted something like, "I
want Retool, but actually built for engineers." We reached out
to the person and he was like, "Oh! This actually is the thing |
was looking for." Within a couple weeks, we closed a large
agreement with that customer.

Customers usually know that Retool and many other things
exist but they've chosen not to use it, due to being a poor
technical fit for the way they need their platform to work. But by
virtue of being code-based, Airplane is a fit for them.

Retool is a drag-and-drop system where the underlying
representation is a domain-specific language that's very
Retool-specific. It's not something you can easily debug,
version control, do code reviews against, extend with your own
code, and so on. Whereas Airplane is normal JavaScript or
Python. You own it. You version-control it. You can stick an
Airplane folder in your monorepo and do stuff with it.

That's the big differentiator. By the time they're even talking to
us, most people already know that because they've seen our

marketing material and found us via word of mouth. That's the
positioning | guess.

From a positioning standpoint, Appsmith open sourced its
platform and sells a hosted version, whereas Airplane
builds on open source like React but within a proprietary
platform. To the extent that Airplane is something of a
Django admin for React, have you considered open
sourcing Airplane? How do you think about open source
vs proprietary as you build Airplane?

While we get this kind of question from people in your position
—analysts and investors—customers don't see it that way. The
reason is that | think the way Appsmith approached open-
source is really strange.

I'm not trying to be insulting here, but | think of it as a weird
product. It's open source, and I’'m a big fan of open source
software, but it's an open source version of essentially Retool,
which is a proprietary system. So, an open source proprietary
system is, | guess, slightly better than a purely proprietary
system.

However, if you build an app in Appsmith, you are using
Appsmith's constructs to build that app. The fact that it's open
source doesn't actually make it any more portable.

What are you going to do? Clone Appsmith and somehow
weave that into your own codebase? You're still building in a
low-code silo. The fact that you can inspect the code of the
low-code silo doesn't actually help you all that much.

With Airplane though, when you build something in it, it's your
own code. It's normal JavaScript, Python, whatever code that
you can version-control, store in your own code base, and do
whatever you want with it. If you had open source Figma, that
doesn't make Figma any more accessible to a developer. It's
still an application that you drag and drop things in. It's not like
now you have a code representation of your Figma file that
somehow that changes things for you.

| think it's halfway there. Open source is good, but they open
source the platform, not open source the actual DSL in which
things are built in Appsmith. | could be mischaracterizing it. |

have not played with Appsmith nearly as much as I've played

with Retool and some of the other tools. But that's my
understanding of it.

So, when you take that guy on Twitter who mentioned, "l want
something like Retool but for developers," | don't know if he'd
seen Appsmith or not. But | think he would look at something
like Appsmith and say the fact that it's open source doesn't
automatically make it actually a developer tool at its core.

| think the open source strategy has been effective marketing
for Appsmith. When | do speak with Appsmith customers, the
thing that resonates with them is less that it's open source and
more that it's free, by virtue of being open source. So, | think,
the open source is a distribution strategy that's been effective,
but | don't think it's necessarily been something that has
inherent value on its own.

I'm a fan of open sourcing things. We haven't open sourced
any components of Airplane. We have debated open sourcing
our View component library, since you could actually take
Airplane View components and reuse them in your own
codebase in a way that’s totally independent of Airplane. It
takes some work to actually package it in the right way, but
we'll probably do that at some point.

Retool has benefited from being used by large ops teams
and distributed gig workers which offers seat expansion.
Being indexed on high seat type use cases, is there a
parallel for Airplane? Is that a headwind or cause that
played out for you?

Probably about half of our users or customers are using
Airplane in a way that is very similar to Retool. It's fintech
companies with ops teams, companies where they have a
bunch of agents—support agents, ops agents, compliance
teams—all of whom need to have access to some internal Ul,
and scripts to run things.

The other half are the things that actually | don't know that
people really use Retool for, which is more like eng-only use
cases, where it's an engineering team with a ton of on-call
runbooks, scripts, and stuff like that, and they want to turn
those into a set of operations that are shareable.

A very common thing would be, "Our eng team is growing. We
want to shut down this idea that everybody has access to prod,

and we want to just have a set of constrained operations that
they can run in Airplane one-off." Those are not nearly as high-
seat as this, "We have a 500-person ops team," or something
like that but they still can be pretty high-seat. There are 100
person, 500 person, 1,000 person eng teams out there, and
they still need things like this.

We're probably undercharging for the seats when we have
those eng-only use cases. It is hard to find a one size fits all
seat price, but that's also fine. It's what | mentioned earlier,
we're not trying to squeeze every dollar out of every contract.
At some point, | think those eng use cases tend to incur higher
compute and there's other ways we can monetize that later,
but for now, that's not really the focus.

Are you envisioning Airplane as a tool with wall-to-wall
adoption company, where everybody has a seat and
Airplane is a tool that everyone in a company uses? Or, is
it more zooming in and charging a higher per seat for
engineering use cases? How are you thinking about that
on a longer time scale?

More of the former than the latter.

In our top accounts, of which we have quite a few that now fit
this pattern, we get basically wall-to-wall adoption. These are
tech companies. Other types of companies might be a little bit
different. But in a typical tech company, we get close to wall-to-
wall adoption from every team except maybe G&A or
marketing.

Then, everyone on the eng team has an account, both
because they need to build stuff in Airplane, but also because
they have these DevOps-y type things, these on-call runbooks,
and scripts, they need to run. People on the product team have
to do feature flagging stuff in Airplane. So, it's pretty wide. We'll
have 200 person companies with like 140 seats; that kind of
thing. Our best accounts fall into that pattern.

As Airplane gets more fully featured, it starts to look like a
PaaS but for internal tools. What stops a PaaS$S for internal
tools from becoming a generalized Paa$S for launching any
app internal or external? If Airplane succeeds, will it
eventually collide with Vercel and Netlify?

| see the type of platform needed for internal tooling as very
distinct from what's needed for customer-facing applications
for many reasons. It may not be realistic for us to branch from
one to the other anytime soon. Occasionally someone might
need to embed an Airplane thing publicly, but it's not going to
be the primary use case for Airplane for a very long time,
possibly forever.

That's a little different from the vision that companies like
Retool express. But fundamentally, the needs for both are
really, really, really different. We would have no illusions that
we'll ever compete with Vercel or Netlify.

That's because internal tools have a lot of properties that make
them distinct from external apps. The reason that a “framework
for building internal tools” is even a sensible concept, while
there's no similar framework for building customer-facing apps
—there's rails and stuff like that, but these are much lower
level.

So, internal tools have a lot of things in common.

One, they have this captive audience effect. If | build a support
dashboard, my support team has to use it. They can't be like,
"Nah. | don't like it." Maybe they can, | don't know but you don't
have to have pixel perfect Ul, UX. That's the reason you can
have these one-size-fits-all component libraries in Airplane.
You don't have to think super deeply about customizing look
and feel to a strong degree.

Usually the scale is not super high. What's the most users you
could have of an internal tool? Maybe 100,000 for the biggest
companies in the world? That’s smaller than even a modestly-
sized consumer app.

There’s also this strong focus on permissioning and auth. The
whole auth model and the permission model for an internal tool
is just totally different than it would be for an external tool. So,
everything is built around that.

You have way too many decisions that Airplane has made that
are very specific to internal tooling that will be hard to break
out of. Now, occasionally someone will be like, "Hey! We're
thinking of Airplane as 98% internal tooling, but we also want

to build this one portal with Airplane that we expose to some of
our enterprise customers so they can see some data."

Maybe we'll support something like that. But we're not going to
support the ability to build an actual production grade
customer-facing app. It's not realistic for us in the near future.

Can you talk about the sequencing of Tasks, Views,
Workflows and what's coming next in terms of the
primitives that you're building which enables you to eat up
different SaaS markets?

Tasks basically represent the ability to turn compute-based,
write-based, script operations into reusable apps that you can
run.

Views represent the ability to create Uls really quickly.

Workflows is an extension of tasks. It lets tasks call other tasks
and do orchestration and multi-step stuff within a task.

With all that combined, you can read data, write data, compute
things. The only thing missing from full-stack app development
is storage really.

So, you can build a fully functional app in Airplane as long as
you bring the database—whether it's a hookup to Salesforce,
Postgres. We're not going to handle that for you. At some
point, maybe we will. | know Retool recently released a Retool
database or something like that, where it's hosted Postgres.

To be honest, it's not a common customer request. It does
come up. There are use cases for which having that natively
on Airplane would make our customers' lives easier. But nine
times out of 10, people are just hooking up Airplane to an
already existing production database or a set of API endpoints
on top of that database. For that reason, the set of primitives
that we have in Airplane today actually services 99% of what
customers ask us for.

| don't know the sequencing of when we'll build more
primitives, necessarily. A lot of what we're doing now is more
features and functionality on top of what exists in the Airplane
—developer experience improvements and that kind of stuff.
But it's less fundamental building blocks and more incremental
value generation, at least for the foreseeable future.

You mentioned people hook up Airplane to a production
database. Have you seen more use cases involve moving
around some of these Zapier-esque or ETL-reverse ETL
type use cases that can be accomplished with Airplane of
moving data between SaaS products, or moving data
between SaaS products and production data warehouse
etc.?

Very occasionally, people will do stuff like that with Airplane.
But Airplane is a platform for basically turning code you've
written into reusable apps that people can do stuff with. You
can definitely write code in Airplane that hits the Salesforce
API, and then takes some data and shoves it into Snowflake.

But there are tools, to your point, that are specific SaaS
already, like Zapier or these reverse ETL companies, like
HighTouch or Fivetran. They already put data from A to B, and
instead of writing code for it, just click three buttons in a Ul and
it'll do it for you.

Those companies are better at that than Airplane. Airplane is
more generic. We have seen people use Airplane for data
pipelines but they're usually highly bespoke data pipelines.

Given that you're building a product that writes to
production, and that's one of the key aspects of what
Airplane does, how do you think about the security side of
it?

The level of security scrutiny that Airplane gets is next level
compared to anything we had to deal with at Heap just
because Heap just tracks client side data. The worst thing
Heap can do is, | guess, mess up your website or something
so you just uninstall it and it'd be fine.

Airplane has write access to production resources. There's no
way around that. That is definitely not a thing that you want to
trust lightly to a third-party. Retool does this as well. As a
result, Retool offers a fully self-hosted version.

We have a hybrid cloud approach, where you can self-host an
agent on your own cloud that does the actual computation but
the actual SaaS plane is still in Airplane's cloud. That kind of
hybrid approach seems to work well for people. It gets the best
of both worlds. You get SaaS level innovation speeds and a

lack of maintenance, but there's this small thing that you host
yourself and that gives you certain security guarantees about
where the data's going to be processed. That helps a lot.

That allows people to use Airplane without having to expose
databases or API endpoints to the public internet and mitigates
a lot of the concerns. At the end of the day, we had to go
through SOC Il compliance a lot earlier than we ever had to at
Heap. So, it's something that people do scrutinize. It's not been
a major blocker, but it's just meant that we've had to take
certain measures as a company sooner in the lifecycle than a
typical SaaS company would.

Airplane is code-based, yet it allows the code to run
through some quality control process and have certain
guarantees vs. something that's a little more SaaS-y where
you could write some text and it would generate some UL.
With the Ul, you couldn’t reason about how it worked or
whether it worked.

The debuggability of Airplane is a very strong point and this will
be hypercharged in the Al world. But even now, people will
come to us and say one of the reasons they like Airplane is
because, if they're building a view in Airplane, it's just one file
with a bunch of React code in it that they've seen a thousand
times before in their life. Whereas, when they're in something
like a Retool, they're like, "Well, | have a bunch of parts of the
Ul that poke out and have some JavaScript code in them. |
have to reason about how the data flows between these four
components, and that's quite hard to do in an unfamiliar
territory."

To your point, if you get a world where | can write some natural
language text and it spits out this finished product or a 90%
finished product for me, that last mile polish and fixing in
Airplane is going to be pretty easy to do, because it's spitting
out something that you've seen a thousand times before.

Whereas it’s just going to be really, really hard to do if it's
spitting out like a Retool app and you're like, "Well, it looks
correct, but I'm not really sure. | have to click on 800 things to
really audit what the heck's going under the hood."

So, already as a pain point, | think it'll be just hypercharged. |
think we're very well positioned for that kind of shift.

If everything goes right over the next 5 years, what does
Airplane become? How does the world change as a result?

Today, with Airplane, we have the set of building blocks: tasks,
views, workflows, etc., that lets you create powerful internal
tools with a lot less work than you would've had to otherwise.
You write a lot less code, but still have full extensibility.

The fundamental concept stays the same for a while. Probably
we do interesting things like storage and other building blocks
that further expand the variety of apps that can be built in
Airplane. What will happen with both Airplane and the world is
that software is going to get significantly easier to write due to
things like LLMs. That will dovetail really nicely with the way
Airplane is built. Airplane is a code-based platform. As code
gets easier to write and create, something like Airplane will get
exponentially easier to spin up.

Right now, if it takes you 20 hours to build the app that you
want from scratch, maybe it takes you three hours to do so in
Airplane. Five years from now, it'll be a world where that same
thing will take you five minutes in a combination of Airplane
plus LLMs and things like that.

You'll get a world where when app creation is that easy, where
building internal tools and things like that is that simple, you'll
see things like Airplane fill more and more of the gaps where
off-the-shelf SaaS doesn't work. You'll also see where people
are like, "Well, | could procure off-the-shelf SaaS for this, or |
could just build a slightly more bespoke version of it than |
need using Airplane" because of how easy creation will
become. You'll actually see things like Airplane replace a lot
more dedicated SaaS vendors because you'll be, "Well, | could
buy that thing,” or “I could just not buy that thing and use this
platform | already have, build something in there that's actually
a better fit for my needs anyways."

That's the thing | might see in five years but | don't know. The
world's about to get really weird, so it's hard for me to predict.

Disclaimers

This transcript is for information purposes only and does not
constitute advice of any type or trade recommendation and

should not form the basis of any investment decision. Sacra
accepts no liability for the transcript or for any errors,
omissions or inaccuracies in respect of it. The views of the
experts expressed in the transcript are those of the experts
and they are not endorsed by, nor do they represent the
opinion of Sacra. Sacra reserves all copyright, intellectual
property rights in the transcript. Any modification, copying,
displaying, distributing, transmitting, publishing, licensing,
creating derivative works from, or selling any transcript is
strictly prohibited.

