P

SACRA

EXPERT INTERVIEW UPDATED
03/11/2022

Lenny Bogdonofif, co-founder
and CTO of Milk Video, on the
past, present and future of
Javascript

TEAM

Jan-Erik Asplund
Co-Founder
jan@sacra.com

DISCLAIMERS

This report is for information purposes only and is not to be used or considered as an offer or the solicitation of an offer
to sell or to buy or subscribe for securities or other financial instruments. Nothing in this report constitutes investment,
legal, accounting or tax advice or a representation that any investment or strategy is suitable or appropriate to your
individual circumstances or otherwise constitutes a personal trade recommendation to you.

This research report has been prepared solely by Sacra and should not be considered a product of any person or entity
that makes such report available, if any.

Information and opinions presented in the sections of the report were obtained or derived from sources Sacra believes
are reliable, but Sacra makes no representation as to their accuracy or completeness. Past performance should not be
taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is
made regarding future performance. Information, opinions and estimates contained in this report reflect a determination
at its original date of publication by Sacra and are subject to change without notice.

Sacra accepts no liability for loss arising from the use of the material presented in this report, except that this exclusion
of liability does not apply to the extent that liability arises under specific statutes or regulations applicable to Sacra. Sacra
may have issued, and may in the future issue, other reports that are inconsistent with, and reach different conclusions
from, the information presented in this report. Those reports reflect different assumptions, views and analytical methods
of the analysts who prepared them and Sacra is under no obligation to ensure that such other reports are brought to the
attention of any recipient of this report.

All rights reserved. All material presented in this report, unless specifically indicated otherwise is under copyright to
Sacra. Sacra reserves any and all intellectual property rights in the report. All trademarks, service marks and logos used
in this report are trademarks or service marks or registered trademarks or service marks of Sacra. Any modification,
copying, displaying, distributing, transmitting, publishing, licensing, creating derivative works from, or selling any report is
strictly prohibited. None of the material, nor its content, nor any copy of it, may be altered in any way, transmitted to,
copied or distributed to any other party, without the prior express written permission of Sacra. Any unauthorized
duplication, redistribution or disclosure of this report will result in prosecution.

mailto:jan@sacra.com

https://www.sacra.com/

Published on Mar 11th, 2022

Lenny Bogdonoff, co-founder and
CTO of Milk Video, on the past,
present and future of Javascript

By Jan-Erik Asplund

EXPERT INTERVIEW

Lenny

Bogdonoff

Co-Founder &
CTO
Milk Video

Background

Lenny Bogdonoff is the co-founder and CTO of Milk Video. We
talked to Lenny to learn more about the historical context of the
Jamstack, how it re-configured the state of Javascript
development, and how his team at Milk Video thinks about
what infrastructure and tools are necessary to build vs. buy in
the Jamstack ecosystem.

Interview

What does "Jamstack™ mean to you?

Jamstack specifically is an acronym for “JavaScript,” “API” and
“markup.” | think it's become popular based on there being a
clear delineation between front and back-end development,
where back-end development has become commodified to
tools like Firebase or spreadsheet, no-code database types of
things, and the personal development of front-end engineers
largely orients around JavaScript frameworks. | think maybe

ten years ago it was jQuery or Backbone or Ember. Today, the
lower-end entry point is probably Vue -- there's less structure,
and it's easier to understand how things work. And then the
more mature company approach is going to be React-based.
Fundamentally, there's a frontend that's plugged into a
backend that often is an external service, as opposed to
something that's hosted. From our perspective, having a
singular interface, like a front-end interface that has codebase
similarities across our public-facing static websites, our actual
application, and maybe even our blog or other things -- that's
the reason why we heavily leverage Jamstack-based front-end
interfaces. Because our application is such a complicated web
application, it becomes just easy to use the components that
we've developed there for our static application also. In some
cases, someone might make a static website in Gatsby or
something like that. We've decided to use Next because we're
able to use the same components we use for our actual
application.

Kind of a little run-on there, but | think probably the most
important delineation for Jamstack stuff is that, generally, you
only have to deploy static assets. When you think about
JavaScript, it's generally not like Node JavaScript. It's a front-
end JavaScript package and some HTML entry point, like an
index on an HTML file. That gets built once and deployed, and
then the client does all of the requesting or accessing of
remote services. So super high level that's Jamstack.

You talked about having a singular front-end interface with
these codebase similarities between the various marketing
sites, blog, etc. Imagine trying to build all this pre-
Jamstack, what might that have looked like? And what
does that singular front-end interface do for you now?

Let's say circa 2005, though maybe that's super arbitrary. |
would say jQuery is in its prime, but we really don't have too
many examples of well-organized front-end applications that
are largely JavaScript-based. What | mean by “well-organized”
is JavaScript applications that inherit the model-view-controller
code organization explicitly to manage the client state or
application store. JavaScript at that time was really just
augmenting static HTML. AJAX -- basically, asynchronous
JavaScript request to update the frontend -- was really not that
big of a thing. We can think of Gmail as the emergence or

popularization of that. | forget exactly when Gmail came out, so
the time range could be a little bit off.

Generally, jQuery JavaScript popularized more and more
interactive logic. Then, moving five to seven years forward, we
start having popularized front-end applications that are doing
much more interactive work. Maybe this has to do with internet
speed, and the fact that the internet got so much faster at
sending payloads to the client side. We moved away from
sending just static HTML updates to actually having some level
of an entire JavaScript payload that was sent, and then the
frontend would update because it had the templates and
whatnot built in.

Backbone was essentially just an extension of jQuery. It was
more for file organization, and it would update the frontend
primarily based on literally updating the front-end markup using
the browser's API. And then the way of updating the browser,
or the client, matured. So it became not just using JavaScript
APIs for updating the frontend to having templating languages,
which were meant to reduce code repeating for updating stuff.
And those templates then spurred their own framework --
Ember and Angular emerged in these days after Backbone,
and before Ember was SproutCore and then eventually React.
| think Backbone became popularized from the New York
Times, the Document Viewer -- | forgot what that guy's name
is.

These frameworks emerged in response to frontend end users'
expectations that applications were going to be faster and
update more. And it also had to do with more long-running
content on a page, so video actually is a great example. You
can't refresh a page if there's a video playing and you need to
change things. Or maybe parts of a page would update, like a
live social feed, but you don't want other things to update. So
with that maturing of the end user's taste and ability to interact
with the web and expectations -- and, again, also internet
speed improving -- these front-end frameworks became much
more mature.

Then there was this interesting line where, if you built your
applications in JavaScript, your website wasn't actually
indexable by the search engines. So there was a long period of
time where people avoided building out JavaScript applications
because their websites wouldn't be searchable, and that was
your primary way of being discovered. | would say where we're

at in the timeline of arbitrary events is around 2012 or 2013.
It’s fucking crazy to think that that's how much time passed.

If you go a couple of years forward to 2013, 2014, 2015, there
was a popularization of these server-side rendered front-end
applications. | forgot when Node came out, maybe around the
2010s. The tooling for JavaScript became not just “augment
onto static websites,” but it became their own frameworks on
the client side. And then it became not just these front-end
frameworks on the client-side for managing larger codebases,
but it expanded to running on the backend. Now you had this
unified language, which people started to harp on and try to
create frameworks that were “same back-end codebase, same
front-end codebase.” People got excited about that. | think
company executives at bigger companies were like, “Oh yeah,
this will make our lives easier.” So there was investment in that
space, but it didn't really go anywhere.

But you had these frameworks appear, like Meteor. It's
supposed to be a single endpoint for managing your backend
and frontend and whatnot. As these front-end application
frameworks got more mature -- and with Facebook and Google
really staking their claim, LinkedIn staking their claim on
Ember, all this kind of stuff -- then you had a lot more people
who wanted to learn these frameworks. For a while, there was
this window where it was like every couple of months there
was a new framework that came out.

They were legitimately evolving and improving. The biggest
improvement that came was the virtualization of updating the
frontend. When that happened, everyone copied that. But up to
that point, there was opinionated codebase structure,
opinionated ways of delineating actions and updating stuff and
whatnot. And there was some cool stuff where Google really
invested in minimizing packages and being able to have
JavaScript load on the fly. The code that you used on Google+
was also the code that was used on Gmail and on the Google
homepage. If you opened the Google+ page, then you didn't
have to download the same packages again. That's how
Angular was intentionally designed. And React was designed
around Instagram and slowly got integrated into the web.

At a certain point, when there was a certain threshold of
framework maturity, the number of people who started to use
these frameworks grew dramatically. From there, you had new
ways of deploying just the frontend, and you also had new

tools coming out that catered just to those people. There was
Firebase and also a database as a service company called
Parse that Facebook bought and eventually open-sourced;
Facebook bought it because they used it for Facebook Games
or something like that. Essentially, you had these systems that
were APls as a service for storing keys and values -- basically,
database entries and whatnot. And then, again, all the onus of
needing a backend drifted away.

I've followed the track of the JavaScript side, but in that same
timeframe, say from 2005 on, people were deploying PHP
applications, premade BBS framework forums, WordPress,
and Drupal. And at some level people were augmenting these
WordPress or Drupal interfaces to be their backend for these
front-end applications. So, whereas originally these
frameworks were end-to-end -- both the backend and the
frontend, it was just rendering static pages -- people started
augmenting these static pages with JavaScript. And then, at a
certain point, these static pages were not even being rendered
in these PHP back-end services or Java-type things. They
were just rendering a JavaScript payload with the initialization
data, and the actual website was just an index.html file with a
JavaScript package. So there was a transition where we went
from end-to-end -- backend and frontend, served always from
the backend -- to backend augmenting the JavaScript, to
backend literally just serving payloads to the JavaScript, and
finally to backend not even being necessary anymore.

Then there were also a couple of other things that happened in
between. The popularization of Gatsby came out of things like
Jekyll, where you would literally write all of your websites in
markup language. | haven't talked about markup at all, but it's
a format of just like, “This is a title. This is your body text” --
whatever it is -- and then you run that through some kind of
Ruby script or Go script, or maybe there's static builders for
Java and stuff like that. I'm sure there are. Those would then
generate these static webpages, and then you just deploy a
big set of HTML files.

All of these things start to converge on your being able to
make JavaScript applications that are indexable by the web,
since the web is becoming more mature and able to render
JavaScript pages. There are standards for how you would
render templates or markup the data of an application. There’s
a whole ecosystem of back-end external API tools that are free
and good, and people can use them to get started without

having to do any personal development. And then the front-end
application ecosystems also have become really mature. They
continue to develop, but now generally they're just iterating
around developer aesthetics, as opposed to introducing
something sizably important.

That’s where we are today. Now, when a mature end user
expects a responsive Ul, and when you're trying to do things
on the web that are not just rendering a static HTML page, it
makes sense to use JavaScript and move a lot of this business
logic into the client side. Hosting that as a single JavaScript
package and separating that from the API in the backend is
Jamstack per se.

There's a lot of frameworks and languages that have come
and gone that were at one point considered potentially the
next big thing. Firebase, for instance, had a similar vision
to what Next.js seems to be doing now, and it’s popular,
but it hasn’t become a core infrastructure for the web. Do
you see Next.js differently? And how do you think about
whether it is durable or whether it might be replaced by
something else?

Good for the Firebase guys -- get that big tech company
money. | think there were a couple emerging currents over the
last ten years, which were cloud computing, Al and ML, the
increase in the number of developers -- like coding becoming a
thing everyone should be able to do -- then the emergence of
mobile, and the no-code movement.

| would say Firebase fit into a really interesting window where
you had programming becoming really popular among
consumers and not in a boring “IT”/computer science sense,
aligning with mobile technologies really manifesting and
Facebook getting really popular. People started to look at
technology as a cool thing to do, and consumer tech itself
became accessible.

There was a period in the mid to late 2000s when people really
thought the mobile web HTML-wise was going to become
really popular, and HTML5 was the go-to term. That really fell
short. Mobile wasn't really there. iOS development just
continued exploding. Five years later, the seeds were planted
for some of these front-end technologies and they just kept
maturing. Not as quickly as people expected, since there were
all these limitations -- like, the device APIs and access to

JavaScript just weren't there, there were limits on memory, the
client side couldn't store enough data and didn't have enough
compute, Chrome wasn't really mature yet. But when those
things started to come to light, | think that's when the
JavaScript frameworks started to make more sense because
the capacity of the browsers and whatnot was there. It took a
while for the JavaScript APIs to mature and then actually
become popularized. For such a long time, people were
making websites while considering that there might be one or
two percent of the users from IE7 or something. You had to
think about these things. The convergence of browser
compatibility, the maturing of browser APIs -- that kind of stuff |
think is a really big deal that | didn't talk about at all.

All of that coming together created these new things that didn't
exist before, one after another. The exciting thing about Meteor
was that Websockets were not really popular for a while and
were hard to implement, and they just made it easy. You also
see huge funding rounds, which don't make that much sense,
like Gatsby. Or a couple of these CMS services, like Prismic or
Sanity. Because they're providing a resource that at some level
is replacing a backend, they can charge stupid amounts of
money for it. They probably have ginormous margins outside of
marketing.

So, why is Next popular? Next is popular because React got
popular. React got popular, but people couldn't index their
websites, so Next solved the problem of React, being able to
be rendered to create static websites. At the same time,
Gatsby did that at some level, but performance-wise, Next is
just way faster. Gatsby is super slow, especially when your
websites get too big. | think Gatsby maybe popularized
Jamstack as a term, the “m” being markup. Gatsby really took
advantage of the patterns that were implemented by Jekyll and
some of these other markup rendering things. But they used
React, so people working on front-end applications could also
have good content management processes and still use
version control with GitHub for managing content.

That's another thing | didn't bring up. Version control through
Git became popular over the last twenty years, and especially
in the last ten years. Mercurial never really became as
popularized. People were comfortable FTPing into their
servers and just replacing codebases and whatnot for such a
long time.

| mentioned cloud computing. For the end user, that means
you can deploy your codebase in a pretty standard way. Tools
like Heroku made that stupid easy. Netlify is an example of the
early deploying of Jamstack tools. Vercel emerged and
provided basically what is a commodity but made good UI/UX
around it, understanding what the end user needs to do and
making that very easy.

When you ask, “What's the next popular thing?” Back-end
services like Firebase or Parse became really big, but | think
their big picture was more around realtime web. If | understand
it correctly, it was just very easy to make backends, not very
high performing throughput backends. Firebase is still quite
big, even though Google bought them. My interpretation is that
Google bought Firebase because they saw a whole category of
developers who would eventually become heavy cloud
computing customers, but they would have to start
somewhere, and the place they would start is key-value store
databases, like Mongo-type interfaces.

All that aside, | think Next is popular today because React is
popular. | think it's actually going to be popular for quite a
while, as long as they keep innovating on build speed. For
developers, the important things are build speed and ease of
development environment, like not having huge version
conflicts. If a lot of applications are written in React, it makes
sense that you can share the components and the code
between your static Next website as well as your more
complicated JavaScript website. I'm not a genie, so | can't tell
you what's going to be popular in the future. But | think within
the realm of the things that are important, | think that's
definitely there.

You mentioned Vercel being a commodity product but with
good UX and good Ul. You guys use Vercel, so I’'m
interested in hearing what's so useful about it and what's
good about the UX? Would you consider switching to
Netlify or somewhere else?

We actually almost switched to Netlify because Vercel's so
stupid expensive. We pay more for Vercel than we do for some
other really core infrastructure. It's pretty stupid because all
they do is build your JavaScript and then host it. But it's a lot of
little things that start compounding and become just easier not
to change, basically. So Netlify is significantly cheaper, but the

onboarding, the development UX, just getting started -- there's
enough friction where it doesn't make sense to do. They
haven’t developed or optimized around that kind of interface.
The way that we use Vercel, it's really just a commodity for
hosting. We could do it ourselves, but there are little things that
become easy. For example, they integrate with GitHub; they
build your package; they deploy it; they let you rollback; they
let you have previews of different packages, different bundles
that are pull requests and whatnot; they manage your
environment variables; they manage access between teams.
That kind of stuff starts to add up. It's interesting, because five
years ago it was very unusual to be able to build a pull request
and have a preview branched together. Infrastructure-wise,
that was hard to do. Now you take it for granted. We don't even
use that feature that much, but just the fact that it's there is
nice. Being able to not have to set up Jenkins or some kind of
build runner and just have that work is quite nice, relative to
how things worked five years ago or probably how things still
work at Google or something.

“Would we try something else?” Yeah. There are tools like
render.com. There's a number of emerging tools that are trying
to simplify infrastructure management. is one that has good
publicity around what they do. But they're all pretty much
providing the same thing, which is, “Let us take your Git repo.
We'll follow the instructions on how to build it. We can detect if
it's a React app or Next app or something. Then we'll handle
the routing so that it's available.” What's cool about Vercel is
they're trying to differentiate themselves by building Next and
then building APls that integrate only with Vercel. That's smart
on their side. They're basically creating defensibility for
something that is just a commodity. They provide analytics and
stuff like that, but my guess is those APls are technically
accessible anywhere else, but because they're building it, they
can do these things that other people can't do as quickly.

I'd love to hear more about this idea of building APIs that
only work with Vercel and the extent to which those might
be something that you can't do on Netlify. Can you talk
about what those APIs do, and how it might be
advantageous to be on Vercel to use them?

The APIls | can think of on Vercel's side that we use are
performance monitoring. They're serving the file, so they can
track the logs of the file being served and the corresponding

time for files served. At some level they're building out their
own API on how those logs are being created based on the
actual library of Next itself, tracking the first connection, the
last connection, the time for a file to be delivered, bandwidth,
that kind of stuff. They simplify it into an equivalent to what
Google does with speed testing. They have their own version
of that, which is smart. | say it’s a private AP| because | don't
know anyone else who integrates with that, but technically
there's no reason why anyone else couldn't. It would be very
odd for Next to lock that down unnecessarily. Given time, it
would make sense that everyone does that. | think Vercel
charges money for the analysis, which is interesting -- no one
else can do that if they are proprietary in a sense.

The amount of investment that Vercel does is also notable.
What they're doing to not be replaced outside of the private
APIs is they are paying attention to what is popular. In the last
year maybe or two years, a really popular change in the front-
end ecosystem is stripping out webpack, which was the
traditional compiler tool and was just slow. It could be 30
seconds between saving and seeing an update, or even
minutes building a JavaScript application because the way that
it was written was not so fast. A popular Go-based builder tool
called ESbuild started getting popular and then replaced
webpack in a number of places, from the regular React
ecosystem to even things like Ruby on Rails and asset
building. Next recognized that asset building speed is
important, so they also migrated over to a faster asset builder
for compiling Next using a Rust-based framework. | would say
Next.js competes most closely with Gatsby. Gatsby is a big
company, relatively speaking to anyone else -- think Prismic,
Contentful or Sanity, those types of tools. So Next was
following along with the esbuild trend, and they did that well.

Then they built out other APIs. In Vercel, you can test your dev
environment using multiplayer editing tools, and they made it
so that you can comment in the webpage. These are things
that Next is providing interfaces for, so Vercel can create the
equivalent of a browser extension but in a Vercel-hosted
environment. They are basically apps on top of your Next app,
almost like adware in a negative sense in the preview
environments. But they’re smart features that they can talk
about and really differentiate themselves with in this otherwise
very simple browser JavaScript ecosystem. Because,
technically, a JavaScript application is literally just an index on

an HTML file and a JavaScript file that has an entry point that
then does other stuff -- it's so simple.

They understand how a designer and a developer work
together, how developers work together, how code review
happens, what are the priorities in rolling out features. | don't
think they have a feature flag system, but | can imagine that's
not a bad thing for them to launch hypothetically. They can do
this in a very simple way. And it makes sense because
developer needs are so prominent and clear.

And there’s one more thing that makes Vercel defensible.
Technically, Vercel's hosting, and value, really only comes from
the moment that you deploy your code to GitHub, which then is
built by Vercel. That value really only comes from that post-
deployment phase. Normally, all the hosting providers are
missing out on all the development activity that happens when
the code is still just on the developer's machine, unless they
create a really fancy command-line service or interface -- but
even then, there are limits outside of testing. So this is super
important: Vercel’s building of Next -- in providing Next as the
platform that's hosted as you're doing development -- lets
Vercel have this end-to-end value chain, where their
development environment is just as valuable as their
deployment environment and everything in between. It's a cool
thing that they were able to accomplish, and it's something that
Heroku can't do, AWS can't do, Google Cloud isn't doing, even
though those are really mature back-end tools. It's not
defensible per se, but they're expanding their presence in
developers' life cycle in a way that none of these other hosting
tools do. It's counterintuitive but smart on their part.

What are the benefits of the end-to-end value chain in
something like Vercel?

When you're doing JavaScript web development today, you
have to build your package to be ready to be hosted in
something like Vercel. You could store it on S3, a file hosting
thing. But the step of building your package can take a couple
of minutes based on how big the application is, so you don't
develop your application -- like coding it and making changes -
- and then do a full build every single time.

Instead, on your development machine you have a developer
server where, whenever you make a change, the updates
happen in a sub-second timeframe so that you can quickly

iterate and see the changes that are happening quickly.
Generally, that development environment and production
environment look a little bit different, so you are running two
different commands: a build command for production and a
local development command for the local development. To
access the codebase locally when you do that local
development environment, you spin up a local server, which
you access on your machine. It's technically only accessible on
your machine, though there are things that you can do to make
your local environment accessible to a remote machine and
whatnot.

Vercel and Next have really invested in that as an augmented
service. It's not a service per se, but Next lets you share your
local development environment with someone remotely, which
is something that normally you would have to use an external
service to do. The value of what Next is doing is they're making
the development environment part of the Vercel ecosystem,
because you need a development environment regardless. If
you're a JavaScript engineer working on an application, you
need to host the application locally in some way. Next is just
really trying to consume and eat all of the touchpoints that
involve that. Then when you do the deployment, that again is a
separate value ecosystem. If you weren't using Next, you
wouldn't use the Next builder; you would use something like
React, Vue or maybe Svelte or something like that. But the big
thing is that they're building the tooling in the places where
there are things that are inevitable.

Going back to your question about, “There's Next, and there
was Firebase, and what's popular.” A couple of other things
that are sexy that are coming out are Svelte, which is like the
anti-React world. Basically, React solved the problem for
people who had been doing web development up to then. And
people who were coming directly into web development without
familiarity with React were basically looking at React, super
confused, like “Why are these things the way they are?”

They were missing the context of what problem these things
solved, so introducing these abstractions was making things
more complicated than people needed. Whereas in contrast to
React, the jQuery world, say, was just like, “You see what you
get, and you don't have to look too far beyond that.” Things
that were important for people who migrated to React were
like, how do you create a fast-performing JavaScript
application? That’s what people were trying to do -- the virtual

DOM updating data quickly -- and that kind of stuff was hard.
So React made that easy. Now people are like, “Hey, we're not
creating data-intensive applications.” There are people who
just want simple build packages or simple small applications to
minimize the actual JavaScript payload that they're deploying.
There are aesthetics that people want to optimize for or trade-
offs that people are looking for, which creates the potential for
new frameworks to emerge. One example is Astro, which is a
framework that's interesting. Again, it allows you to minimize
the amount of JavaScript you send to the client side. Svelte is
another one, just like an end-to-end JavaScript. There are
different aesthetics or reasons that people in different
environments may want to try different things out. But it's
almost like a reaction to the last generation or the current
modes of doing things results in the next thing. It's evolution
within the ecosystem in a sense.

One criticism we've heard is that Jamstack and Vercel are
great for getting projects up and running, but there may be
limitations when you start trying to build fully featured
apps. Do you see a point where you would have to move
off Vercel onto something like AWS simply because of the
demands of what you're building?

No. | think that criticism comes less from people who are
hosting their JavaScript applications on Vercel, and more from
people who are leveraging free tiers of products. They want to
keep leveraging the free tiers, but they're hitting the limits
based on what they're doing. That primarily comes from the
back-end abstraction tools that provide database APIls and
whatnot as a service. So someone who's using Firebase to
build an application can get started right away. They just have
to register, they get a URL endpoint, and now they can make a
key-value store database. They can create log in, off.

| don't know what the limits are. But if they get past a hundred
users, or they want to store multiple data tables -- something
that's trivial if you spin up a Laravel instance or a Ruby on
Rails application to handle your own application -- then it
becomes a problem, because it gets expensive super quick.
Something that was cheaper to not have to hire a back-end
developer to manage becomes a huge issue. Because now,
you're in a situation paying thousands of dollars for something
that would be a free MySQL database or something on
DigitalOcean.

This is a little tangent here, but you can scale with Vercel, and
it's fine. But we're getting to the point where every time we add
a new developer, it is a bit expensive. The fact that we have to
pay for a new developer seat, which is $40 or $50, doesn't
make any sense. So at a certain point, we'll transition. It'll
make more sense to just pay to set up Jenkins or one of these
build runners and then host our own front-end payloads and
AWS. These are such standardized practices that it's an easy
thing to do. But | think the criticism to my point is that it's more
around the back-end services for Jamstack tools as opposed
to the front-end side.

There is a desire for back-end abstraction tools at different
parts of the stack. At the most abstracted side, you have these
databases for super abstracted no-code tools that just need a
backend. A little bit less abstraction is these API services that
provide Jamstack interfaces for saving data, accessing it, log
in, payment, and infrastructure -- that kind of stuff. The even
less abstracted parts are these new things that are just coming
out, like a database called PlanetScale. It’s super interesting --
it’s trying to provide highly scalable databases that never hit
the limits of Postgres or MySQL. Basically, Amazon's
ecosystem as a service, but very specifically around databases
like infinite table, infinite column, infinite row that always
perform well. Those can be really fucking expensive. But
people are willing to move there because they don't have to
pay a DevOps person. It becomes a financial trade-off at some
level. They don't have to worry about performance as they
scale.

We're talking about Jamstack specifically, but the ecosystem
for any development environment is the same. Like search --
some people will pay to set up their own Elasticsearch or Solr
environment. Other people will pay that French company
Algolia to manage their search. Pricewise, it's just totally
unreasonable, so freaking expensive to use these things. But
at a certain level, it makes sense because you only have so
many development resources. Hiring is hard, so it's good if you
don’t have to think about it.

That’s also the reason we use Heroku. Heroku is really
expensive, but we don't have to manage our backend, and we
can roll back our database. We can scale up services and not
have to think about it based on spot demand. There's no
thought that goes into that. Paying a couple of thousand bucks

a month for what we're getting is probably not a smart idea, but
that's a trade-off that at this time we're willing to make,
because hiring somebody just to think about that will cost
more.

| think the Jamstack ecosystem is ideal for teams in the one-to-
five-person size or environment who have no back-end
development and no engineering expertise, but who can build
front-end things because the feedback loop is fast, and they
can learn that. People who are working on more production-
level, planet-scale types of things, maybe they're setting
themselves up accordingly. Same with Algolia and those types
of tools. They may be bigger teams but still don't have a
search expert or a DevOps infrastructure expert.

Are there APIs that you insist on using when you build on
the Jamstack, or are you more open-ended?

| think we're pretty open-ended. We don't really use that many
external infrastructure APIs. The thing we do use is
transcription. | love AssemblyAl, just to toot their horn. | don't
want to manage keeping a machine learning model up to date,
knowing what the best practices are around rendering certain
pronouns or numbers or whatnot, or keeping a dictionary of
company names and handling that in different languages and
accents. If | can pay something to do that, then, boom, I'm
going to do that. And if it's cheap and good and dependable
and fast, that’s even more reason why.

Video coding -- Mux is a great example. | think as a product
offering, they want to have broader appeal for, say, user-
generated content companies. Their money comes from
enterprise video and enterprise organizations, so our use case
maybe doesn't fit their business model, but they want to
expand in that direction. As a result of wanting to expand, their
product offers opportunities that work within our space.

There are things that are easier to not have to set up, but then,
if you avoid setting them up, at some point you'll have to set
them up because the cost will get too expensive. And there are
other things where you can avoid ever setting them up. You
can always pay somebody forever, and that's going to be okay.
Because you're in the sweet spot in where you fit into the way
that the external service makes their money, you can get a lot
of value and not hit their limits or whatever.

AWS is basically the only thing we have to use: GCP, AWS,
Heroku, Vercel. But for external API services, | can't think of
anything in particular.

Disclaimers

This transcript is for information purposes only and does not
constitute advice of any type or trade recommendation and
should not form the basis of any investment decision. Sacra
accepts no liability for the transcript or for any errors,
omissions or inaccuracies in respect of it. The views of the
experts expressed in the transcript are those of the experts
and they are not endorsed by, nor do they represent the
opinion of Sacra. Sacra reserves all copyright, intellectual
property rights in the transcript. Any modification, copying,
displaying, distributing, transmitting, publishing, licensing,
creating derivative works from, or selling any transcript is
strictly prohibited.

