P

SACRA

EXPERT INTERVIEW UPDATED
09/12/2022

Julia Schottenstein, Product
Manager at dbt Labs, on the
business model of open source

TEAM

Jan-Erik Asplund
Co-Founder
jan@sacra.com

DISCLAIMERS

This report is for information purposes only and is not to be used or considered as an offer or the solicitation of an offer
to sell or to buy or subscribe for securities or other financial instruments. Nothing in this report constitutes investment,
legal, accounting or tax advice or a representation that any investment or strategy is suitable or appropriate to your
individual circumstances or otherwise constitutes a personal trade recommendation to you.

This research report has been prepared solely by Sacra and should not be considered a product of any person or entity
that makes such report available, if any.

Information and opinions presented in the sections of the report were obtained or derived from sources Sacra believes
are reliable, but Sacra makes no representation as to their accuracy or completeness. Past performance should not be
taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is
made regarding future performance. Information, opinions and estimates contained in this report reflect a determination
at its original date of publication by Sacra and are subject to change without notice.

Sacra accepts no liability for loss arising from the use of the material presented in this report, except that this exclusion
of liability does not apply to the extent that liability arises under specific statutes or regulations applicable to Sacra. Sacra
may have issued, and may in the future issue, other reports that are inconsistent with, and reach different conclusions
from, the information presented in this report. Those reports reflect different assumptions, views and analytical methods
of the analysts who prepared them and Sacra is under no obligation to ensure that such other reports are brought to the
attention of any recipient of this report.

All rights reserved. All material presented in this report, unless specifically indicated otherwise is under copyright to
Sacra. Sacra reserves any and all intellectual property rights in the report. All trademarks, service marks and logos used
in this report are trademarks or service marks or registered trademarks or service marks of Sacra. Any modification,
copying, displaying, distributing, transmitting, publishing, licensing, creating derivative works from, or selling any report is
strictly prohibited. None of the material, nor its content, nor any copy of it, may be altered in any way, transmitted to,
copied or distributed to any other party, without the prior express written permission of Sacra. Any unauthorized
duplication, redistribution or disclosure of this report will result in prosecution.

WWW.SacCra.com

mailto:jan@sacra.com
https://www.sacra.com/

Published on Sep 12th, 2022

Julia Schottenstein, Product
Manager at dbt Labs, on the
business model of open source

By Walter Chen

EXPERT INTERVIEW

Julia

Schottenstein

Product Manager
dbt Labs

Background

Julia Schottenstein is a product manager at dbt Labs. We
talked to Julia to get a better understanding of dbt's open
source business model, the modern data stack thesis, the
competitive dynamics between dbt and companies like
Snowflake and Fivetran, and dbt Labs' big upside vision
around data transformation.

Interview

Tell us a bit about your background, especially in venture.
What inspired you to join dbt Labs?

| spent a number of years at a venture capital firm called NEA
investing in open source, dev tools, data, and infrastructure

companies. | first discovered dbt in early 2020, made by what
was then a data consultancy called Fishtown Analytics. | flew

to Philly, got to know Tristan (Handy) a little better, and
thought, "This is really interesting."

dbt was at the intersection of a lot of big trends that | was
seeing — more data moving to cloud warehouses, empowering
a different persona to do more software engineering-like work,
and a whole ecosystem being built around data assets.

| had a lot of conviction in what the team at dbt Labs (then
called Fishtown Analytics) was building, and at first, | wanted
to get involved as an investor. | had invested in a lot of open
source businesses, and | saw excitement and enthusiasm for
dbt in a way that | had never seen for a different product.

After a year of watching the company closely, my conviction
only grew. | ended up calling Tristan in early 2021 and asked to
join full-time. I'm now a part of the product team.

What’s your take on the composition of data teams? In
particular, who makes buying decisions around dbt and
transformation vs the data stack and the data pipeline?
How is that different for an early-stage company vs people
who are migrating later?

| think titles for data roles can sometimes be challenging
because they're not descriptive enough.

One of the main personas is a data engineer, someone who
thinks about data pipelines, builds the data platform, and is
more familiar with traditional software engineering practices.

Then, there are the data analysts who usually do analysis in
SQL—their language of choice. They help answer questions
for the business.

We have a persona that we like to target—the analytics
engineer — which is a hybrid of the two. They understand the
business context really well and work closely with their
business stakeholders. They primarily work in SQL, but they
also want to be the ones who create clean data assets in their
production warehouses, a task previously owned by data
engineers.

Who do we target?

Customers of dbt Cloud sit on a wide spectrum and look really
different. If you have a cloud data warehouse, then you're a
good candidate to use dbt. We have teams of 1 that like dbt,
going all the way up to teams of 1000+ analysts.

For the majority of people who use dbt, it's a bottoms-up and
self-serve go-to-market. They gravitate to the tool and get up
and running very, very quickly.

However, in larger teams, the decision makers are often heads
of a data platform team who sponsor dbt for their org. They roll
it out to all the data teams within their organization, and help
each of them succeed by platforming on dbt.

Each team member has different priorities. For larger
companies, where we're very successful, a head of data is
thinking about, “How do | get 1000 analytics engineers
productive and successful when | have all these security and
environment requirements?” and “How do | think about data
quality at scale?” and “How do | think about velocity in
contention with data quality?” They’re thinking hard about how
to create a system to make their teams successful.

The practitioners on the team, or analytics engineers, are the
users of the product and usually are our champions and
motivate broader adoption in their orgs.

Can you briefly talk about what dbt Labs prides itself on
being the best at?

The coolest thing for me, it's why | joined dbt Labs, is the sheer
enthusiasm that people have for the product. dbt is not just
software in the traditional sense. It changes an entire workflow
of how people do their day-to-day jobs.

It's very common for people to say, "l won't work at a company
that doesn't use dbt," because what it means for them is, “If
your employer doesn't invest in dbt, your day-to-day is going to
be hard, and you’re going to have all these downstream data
quality and reliability problems.”

People can describe their business transformation logic and
their metrics in dbt code and get the benefits of built in
documentation, testing, version control, which makes actual
data table creation a lot safer and the quality a lot higher.

You can try to do this in GUI based transformation tools but it's
just not as powerful or descriptive as you'd like, or you can pick
another tool like Airflow, but that’s maybe overkill for what
you're trying to do.

Where | think dbt is exceptional is this Goldilocks approach—
we say, "If you know SQL, we can empower you to do all these
other amazing things and help you earn the right to create
clean tables in your production warehouse." That was really
never done before dbt.

You've implied that people have this "a-ha" moment when
they start using dbt and that is one of the reasons why
people are so passionate about it. Can you give us a
historical perspective on the world pre and post dbt?

Imagine that before you could do any of your work, someone
gave you a tool that was really not that great for your job—for
instance, something legacy like Talend or Informatica where it's
always broken. Or maybe you had to go and ask a data
engineer who held the keys to production to create the data
assets you needed in your warehouse for you.

That was frustrating, because when you needed to work, you
had this big dependency on a different team to help get your
work done. There was a lot of gatekeeping around letting
analysts contribute to prod.

And pre-dbt that was the norm for data transformation. You
need to have proper software engineering best practices—Ilike
version control, documentation, reviews on your pull requests,
Cl checks, and tests—and without that, you shouldn't be
allowed to push code to prod.

What dbt did was create a path forward such that people who
were close to the business logic could also be the ones to
deploy their pipelines and create their data tables. dbt created
an easy way to collaborate and productionize data
transformation work that was accessible to more people.

Is there a core way that you think about your business
model as an open source company? Can you cite any
analogy to help us understand the distinction between
what customers pay for and what is open source?

So dbt Core is a language or framework. It's SQL-based with
some extra bells and whistles, like configuration. We have
Jinja and macros so that you can be more productive with SQL
than you could otherwise.

We've built a compiler that translates your dbt SQL code into
instructions for your data warehouse to create data assets.
That's dbt Core. It's open source and will always be so,
because it's a language, and it's really valuable for companies
to have a place to describe something as critical as their
business logic in a framework that's not proprietary. dbt is a
standard, and it will always be freely available for our users.

On the cloud side, we build a lot of proprietary software that
complements the dbt workflow that helps customers accelerate
their time to getting up and running and improves their data
posture and velocity.

The cloud product has an interactive development
environment, so you can create your dbt models more easily. It
has Cl checks, so, when you're trying to promote your code
from development into production, you get a staging
environment that automatically tests your dbt code and data
quality.

We have a scheduler that powers building models so that your
tables can remain up to date and fresh, and you don't have to
maintain that infrastructure yourself.

We’'re launching a semantic layer which will power your
business queries, and allow you to have good governance so
that you can write your business logic once and have
consistency wherever it's queried or consumed.

We also host your documentation for you. The cloud product,
what we sell, supports the full workflow around the analytics
engineering practice, supercharging the open source language
and framework.

Is GitHub to Git a helpful analogy? How do you think about
that?

It's a great analogy. dbt is more similar to GitLab’s approach
where Git is the open source framework for how you do
version control, and GitLab sells all of these products around

the software development lifecycle. They sell products such as
Cl, roadmapping tools, and security products that are
proprietary, but complement the main version control, open
source technology.

Can you talk about how the team at dbt thinks about
building and scaling community? Is their approach
essentially the same as other open source community
building efforts, or is it differentiated in some way?

The founding story of dbt Labs is well-documented. We were a
consultancy before we were a software company and our
founders, Tristan, Drew, and Connor, created the Slack
community to talk with their clients. It was a forum where they
could have conversations around the practice of data analytics,
or be friendly and chat about some of the things that they were
working on.

It slowly started to grow as this hub where people came to get
help, learn, teach, socialize, share. It grew over time in a really
authentic way. If you go into the dbt community Slack today,
you see a lot of people asking questions to get help with dbt.
But more than that, people are having conversations about the
industry, new technologies, their work, how to manage teams.
It's become this watering hole where people go to learn, ask
questions, and even just catch up with their friends.

A majority of conversations happen in DMs. | have this direct
line to pretty much anyone in the data community where if they
want to get in touch with me, they can, not on LinkedIn, but on
dbt Slack. They'll just send me a DM and | meet a lot of people
that way.

We now have over 30,000 people in dbt Slack. But we work
hard to make it feel small so that you can get the same
interesting conversations that you could with a smaller
audience. We do a lot to keep that spark. We organize
channels around topics of conversation. We have champions
of channels, sometimes light moderation, and we try to keep
the general tone and feeling of the community very positive
and optimistic, because that's what we stand for. And we also
have other outlets for the community that don't evolve around
Slack—It's meetups, conferences, and Twitter communities too
—all about dbt.

dbt Labs is a very long term-focused company, so, we want to
make sure that it doesn't ever feel like you go to that Slack and
are being sold something, either by us or by other vendors that
are in the Slack group as well. We hope that if we can continue
to create a great place for people to talk about data and deliver
great products, then it will all compound over the long-term.

Can you talk about pricing and packaging, especially with
respect to retaining and expanding customers as they
reach enterprise scale? How do you think about customer
success, sales teams, and that aspect of the business?

We have three plans today: Developer, Team, and Enterprise,
and it's a seats based pricing model.

The developer plan is for individuals who want to get started
for free and learn what dbt does.

The team plan is better for collaboration and has additional
functionality like access to our API as well as higher build
concurrency.

Our enterprise plan is aimed at our larger customers that have
more security, compliance, and governance needs unique to
bigger companies, and it's a sales led motion.

The way that we grow is we'll often land with one team in a
large enterprise. But there might be a dozen or a couple dozen
data teams in a large organization. If we’re successful with one
team, we have a natural expansion path to other teams as
well. Or we might start with the Snowflake business, and we
expand to get the Databricks business too. At large
companies, there’s often more than one warehouse in use.

SQL has been the lingua franca for the modern data stack.
What are the advantages and drawbacks of having that as
the standard from dbt's perspective? Can you talk about
the trajectory in which the product is going? What can
writing Python unlock?

| think the choice to be SQL-based was a huge advantage for
dbt because it is so accessible to lots and lots of people. It has
this staying power that's unlike any other language in analytics
because you have relational data warehouses. SQL is the main
way people do their dbt transformations.

We are introducing Python as a transformation language as
well because we view SQL and Python as two languages that
are better at different things. We always advocate for people to
use the right tool for the job, and we're increasingly seeing
polyglot teams.

It's really common for many data science or machine learning
workflows to consume from cleaned, prepped data tables that
were produced with SQL-based dbt transformations. Now with
the introduction of Python models in the broader dbt DAG, we
make the whole workflow a little bit smoother. You can have
better handoffs between different teams that actually rely on
the same underlying data.

How do you think about the balance between capturing
value and creating it? Is this a part of dbt's philosophy?

We have a value at dbt Labs that “profits are exhaust”, and |
really believe in this value. You have to build something that
people care about or see enough value in that they're willing to
pay for it. Without a great product that improves the way teams
work, they won't exchange money for it.

We want dbt to be a standard. Our users see a lot of benefit of
dbt being open source forever. If you’re going to spend the
time to write all of your transformations and business metrics in
dbt, you want to be really confident that you own that. That's
yours. That's what open source enables us to do. It gives
people the confidence and comfort that they are the custodians
of that logic whether they decide to pay for dbt Cloud or not.

Then, it's our job to build enough proprietary software that
helps complement the open source framework such that you're
better off running dbt on our cloud products, on our
infrastructure, than you would be otherwise.

There are many companies that have different needs that are
very happy using open source only. And we're happy with that
outcome. But for many companies that don't have unlimited
engineering resources and value their time, they see that it's a
lot faster to use our cloud products. They're looking for
reliability and durability, and they don't want to have to
maintain dbt themselves. For them, dbt Cloud's a great option.

What do you make of the vision that every B2B SaaS app
will be built on top of the customer's data warehouse as
the data layer? What must happen in terms of latency in
the whole data pipeline that needs to be built for this
vision to be realized? Where does dbt fit in when speaking
of the modern data stack?

In a lot of ways, it's already happening. We see customers of
dbt running dbt transformations at increments of 15 minutes or
faster, which means that they have some kind of real-time data
need. I'm constantly surprised, in a good way, at how people
stretch dbt in their warehouses to power production software.

We have one customer, a corporate training company, which
powers their customer facing admin dashboards that give the
details on which employees have completed which
certifications or training, with dbt in near real-time.

| think most people would've thought that this experience was
built by a software engineering team, but actually, we've
empowered an analytics team to build customer-facing
production software, which is exciting.

| don't subscribe to the belief that "We will have one data store
that can do both analytical and transactional work equally
well." Software engineers will continue to pick the best
database for their needs, and almost always, warehouses are
not a good choice to build production applications on top of.

However, on the fringes, we will see more and more examples
where warehouses will be pushed to near real-time use cases
to power what people are calling data applications, and dbt will
have a very central role in that shift because we describe the
underlying logic of what the application needs to do.

Pre-dbt, people couldn't even have this conversation because
data wasn't tested or the quality was so low that it couldn't be
pushed directly to customers. However, with proper guardrails
and checks in place, you can now have data that lives in your
warehouse, and is prepped with dbt, power all sorts of use
cases.

What excites you about new things that are being built on
top of modern data stacks in dbt that couldn't have been
done before?

It's not any one application that I'm most excited about. It's
more that we are increasingly breaking down data silos so that
data can be used in many contexts. This is hard to do right
because centralizing data in one storage layer is never really
possible for large companies, but increasingly we see data
tools being composable so that you can be sure you're getting
the same data information anywhere you view it.

Then, data conversations become a lot more interesting,
because you don't have to constantly question, "Is this data
right? Can | trust this data?" High quality data can be pushed
to more real-time use cases, like a production application. Or,
it can be pushed into systems of action like Salesforce where |
trust this data so completely that | can go and send a
marketing campaign email off of it without human intervention.

That, | think, is really exciting. It's more centralization,
consistency of business logic that people can depend on
across different data stores for different use cases.

There’s a distinction made between transformed data and
metrics. There’s also some discussion about whether
metrics should be a separate category in modern data
stacks. How do you see some of these competing visions?

This is a big, compelling reason why | joined dbt Labs . |
believe so strongly that metrics belong with dbt.

Data transformations are batched and pre-computed, so you
know exactly what that table will look like. Metrics are business
definitions like CAC or lifetime value of a customer that are
very bespoke to your business. They're often computed in real-
time at the moment of query, so the user can pick over what
time period they care about this metric to be calculated for.

You can't pre-compute these metrics in pre-transformed tables,
because it'd be too expensive to do so. It needs to be
computed on-the-fly when the person asks the question, "What
does this metric, over this period of time look like?" At dbt, we
believe that metrics should be tightly coupled with your
transformation logic. You don't want to describe these things in
a million spots.

Traditionally, people describe their metrics in their Bl layer, so
it’s tightly coupled with Looker as an example. LookML is a

proprietary query language built for Looker. It's a lot of work to
get that semantic layer up and running. But, what happens
when you want that metric to show up in some place other than
Looker? You've got to describe and define it again.

The beauty and power of metrics being coupled at the layer at
which you do your transformations is, you can have lots of
consumers that read from the very same metric, whether it's a
notebook, a Bl dashboard, or even, a data catalog. You want
metrics to be consistent no matter what context they show up
in.

It's valuable because it's not tightly integrated with your
warehouse or your consumption layer, so we can serve
consistent information across any context.

What about positioning this metrics layer as something
completely independent between Bl and transformation?

We don't need another layer. In fact, that's the last thing we
need. | think adding metrics to the transformation layer is very
natural. Doing dbt transformations and separately doing your
LookML metric definitions in two different tools is a lot of work.
It'd be far easier to have one centralized place alongside your
transformations where you write metrics once and never have
to think about it again.

What prevents a data warehouse company like a
Snowflake from getting into this, on the one hand, vs an
ELT company like Fivetran?

Nothing prevents warehouses or Fivetran from offering dbt or
other transformation technologies. They already do so. dbt is
open source, so they can offer simple dbt runners.

For our users, many don’t want the business logic of
transformations and metrics to be as tightly coupled to the
warehouse or Bl layer. Many customers have multiple
warehouse vendors or multiple Bl tools, so you don’t want to
reproduce the logic in different storage and consumption
layers. In a lot of ways, our abstraction and vendor neutrality
makes dbt so powerful and useful to consumers.

The other reason why people buy dbt Cloud instead of using a
dbt runner in a Fivetran or another EL product is because we
offer a far richer overall product experience. The people who

do transformation work are often different from those who do
set up the extract load flow. So, it's a separation of tools that
match a separation of responsibilities. The transformation layer
needs to be closer to the business needs versus the pipes of
data movement, which is what Fivetran or the EL provider
owns.

Is there anything in particular that dbt has learned from
the success of other open source companies that have
preceded it? How do you position dbt vis a vis incoming
cloud companies—Amazon, Google, Microsoft?

Clouds like to sell compute, storage, and infrastructure, and
while dbt is infrastructure, it’s also a workflow tool which is
harder to copy. We invest in building productivity software for
analytics engineers with our purpose-built IDE and CI checks,
alongside the platform parts of our offering like the semantic
layer and scheduler.

From the beginning, we've always built proprietary products
that complement our open source offering which helps protect
us from competition. We also have a loyal community which is
an important moat for our business.

What are the key tailwinds behind modern data stacks?
How is dbt positioning itself to capitalize on that?

The only reason we can have this conversation is because
we're 10 years out from when cloud warehouses were created
and launched. Moving lots and lots of data to BigQuery,
Snowflake, Databricks, Redshift, and others is the norm.

We continue to believe that more and more data will be stored
in the cloud and that dbt is the layer that will help people make
sense of that data and serve it to their businesses in useful
ways. Most analytical workloads are for reporting and visibility
purposes, but we'll see new use cases emerge as well and dbt
will evolve to help serve and expand the market beyond where
it is today.

dbt recently raised $400 million. It was last valued at over
$4 billion. What is the upside from there? Is it more a
thesis around the big category expansion of
transformation, or does dbt need to go out and launch its
own data warehouse/ELT product to live up to that
valuation?

The cloud warehouse market is enormous. The combined
market cap of the cloud warehouse players is probably close to
$200 billion today, and we believe, transformation and the
semantic layer can easily be at least 15% of warehouse spend.
We're vendor-agnostic, so that's a $30 billion opportunity right
there. And that's just with our core competency, today.

We don't have plans to build a warehouse. We don't have
plans to build an EL product either. Those are extremely hard
to do. | have a lot of respect for people who build those
products, but for us, there's tremendous value being
Switzerland and working with these vendors as partners. We're
excited to be executing right where we are.

In five years, if everything goes right for dbt Labs, what
does it become? How will the world change as a result?

| think the success of dbt could change the world in really big
ways. People are very excited about the future of data apps. |
am too, but I'm probably more excited about a mundane future
where people just trust that their data is on-time and correct
and, little-by-little, they use data in their lives to make big and
small decisions.

Just like | don't get into my car without using navigation, |
expect that more and more people will depend on dbt prepped
data in lots of different contexts in their lives.

Disclaimers

This transcript is for information purposes only and does not
constitute advice of any type or trade recommendation and
should not form the basis of any investment decision. Sacra
accepts no liability for the transcript or for any errors,
omissions or inaccuracies in respect of it. The views of the
experts expressed in the transcript are those of the experts
and they are not endorsed by, nor do they represent the
opinion of Sacra. Sacra reserves all copyright, intellectual
property rights in the transcript. Any modification, copying,
displaying, distributing, transmitting, publishing, licensing,
creating derivative works from, or selling any transcript is
strictly prohibited.

