P

SACRA

EXPERT INTERVIEW UPDATED
03/03/2022

Jason Lengstorf, VP of Developer
Experience at Netlify, on
Jamstack's anti-monolith
approach

TEAM

Jan-Erik Asplund
Co-Founder
jan@sacra.com

DISCLAIMERS

This report is for information purposes only and is not to be used or considered as an offer or the solicitation of an offer
to sell or to buy or subscribe for securities or other financial instruments. Nothing in this report constitutes investment,
legal, accounting or tax advice or a representation that any investment or strategy is suitable or appropriate to your
individual circumstances or otherwise constitutes a personal trade recommendation to you.

This research report has been prepared solely by Sacra and should not be considered a product of any person or entity
that makes such report available, if any.

Information and opinions presented in the sections of the report were obtained or derived from sources Sacra believes
are reliable, but Sacra makes no representation as to their accuracy or completeness. Past performance should not be
taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is
made regarding future performance. Information, opinions and estimates contained in this report reflect a determination
at its original date of publication by Sacra and are subject to change without notice.

Sacra accepts no liability for loss arising from the use of the material presented in this report, except that this exclusion
of liability does not apply to the extent that liability arises under specific statutes or regulations applicable to Sacra. Sacra
may have issued, and may in the future issue, other reports that are inconsistent with, and reach different conclusions
from, the information presented in this report. Those reports reflect different assumptions, views and analytical methods
of the analysts who prepared them and Sacra is under no obligation to ensure that such other reports are brought to the
attention of any recipient of this report.

All rights reserved. All material presented in this report, unless specifically indicated otherwise is under copyright to
Sacra. Sacra reserves any and all intellectual property rights in the report. All trademarks, service marks and logos used
in this report are trademarks or service marks or registered trademarks or service marks of Sacra. Any modification,
copying, displaying, distributing, transmitting, publishing, licensing, creating derivative works from, or selling any report is
strictly prohibited. None of the material, nor its content, nor any copy of it, may be altered in any way, transmitted to,
copied or distributed to any other party, without the prior express written permission of Sacra. Any unauthorized
duplication, redistribution or disclosure of this report will result in prosecution.

mailto:jan@sacra.com

https://www.sacra.com/

Published on Mar 03rd, 2022

Jason Lengstort, VP of Developer
Experience at Netlify, on
Jamstack's anti-monolith approach

By Jan-Erik Asplund

EXPERT INTERVIEW

Jason

Lengstorf

VP, Developer
Experience
Netlify

Background

Jason Lengstorf is the VP of Developer Experience at Netlify.
We talked to him to learn more about two trends that are
driving Netlify's massive growth: (1) the trend towards
serverless and apps and websites that utilize Jamstack-style
static content delivery, and (2) the rise of developer tools that
abstract away the complexity of cloud services like AWS.

Interview

To start off with, I'd love to hear you define Jamstack and
explain your personal path into the world.

The core of what we're trying to do with Jamstack is get away
from the really cumbersome process of building for the web.
What we saw previously is that web was an outgrowth of the
rest of engineering and that meant that you were putting your
web development processes through these very heavy back-
end review queues of staging environments -- you got to set up

separate containers, you're waiting for a QA team and a
DevOps team to do a blue-green deploy. All these things that
are really critically important when you're doing a payment
system rollout, but when you're making an update to a blog
post, it just doesn't make sense.

What the Jamstack is is an answer to that pain that people are
feeling. The way that we've bucketed it is that it's a decoupled
frontend, so you take the frontend of your website and you
develop it completely independently of the other code in your
product. It'll only communicate to those other code bases
through APIs. You pre-compile as much of that as you can, so
you have a build step that'll pull in data that doesn't change
between page loads and compile that into static assets instead
of trying to load it on every page request. This helps increase
your cache ability, lowers your overhead, reduces risk and
improves security. There's a lot of good reasons to do that.
Then you push that out to the edge on a CDN and using
various other methods of delivering that content as close as
you can to your end users.

This is the default that we want people to start adopting for the
web. It's what we would consider to be the workflow for the
modern web. As you extend that with more dynamic use cases,
you can still use that Jamstack base of “you're building a
decoupled front end that's as pre-compiled as it can be ahead
of time, and then deployed to a CDN.” You can still do
additional things on top of that, like add serverless funnel to
the Jamstack definition. What we're trying to do is get people
to change where they're starting from. Instead of starting from
“you're on a server, you've got all these extra requirements and
pains for how you get something live,” you start from “l can
make a change in GitHub, | push it to the repo, everything
automatically builds and then it's live.” So we have five minutes
from “I identified a bug in production” to “that change is pushed
live” because of the default architecture, and then we extend
that.

When the Jamstack movement started, a lot of what was
created with it was personal blogs, portfolio sites --
simpler kinds of projects -- and over time, and especially
today, it's evolved towards more dynamic applications. I'd
love to hear your take on where it is today in terms of
complexity. What can be built on Jamstack, and how do
you see that evolving in the future?

To answer that, | should probably answer the other half of your
first question, which is my path to the Jamstack. When | was
working at IBM, we were on a more monolithic stack. In order
to develop the frontend, your first day as a developer you
would get your development machine, and then you would
have to configure a Docker container and NGINX and a
reverse proxy and all of these pieces so that you could just run
the code locally. Then to deploy was a huge set of hoops. We
deployed every Thursday, | think. Maybe every two weeks on
Thursday, we would get something out to production. It was
weeks to get something live, instead of minutes or hours or
days, and that was really painful.

On top of that, because of this slower deploy process, we had
trouble iterating. That meant that instead of trying something
new -- like removing old code and replacing it -- we were doing
this layering. We had these geological layers of app that we
just bolted more stuff on top of, because we weren't quite sure
how to handle regressions. If we made a mistake, the rollbacks
were a huge pain, and it took so long to get something live that
we were like, “You know what? I'd rather not deal with that.
Let's just add something on top that solves our problem.”

We wanted to fix that. We wanted to improve that because, in
addition to just the complexity of building, we were having
huge slowdowns. You'd go to certain areas of the app, and you
would load Django, which would load jQuery, which would load
React, which would load another version of jQuery, and then
you'd finally get your app. You're looking at tens or maybe forty
seconds to load certain dashboards that were really data
heavy. We were like, “This is unacceptable. We can't do this.”

So we started looking at better solutions. | didn't know that the
Jamstack existed at the time. But we decoupled that frontend,
we started building a new React app that laid on top of the old
system instead of being a part of it, and we only spoke to the
old system through APIls. That allowed us to get rid of all of
that frontend cruft, and we rebuilt whole dashboards in our app
using this approach.

That was where it really became clear to me, because we saw
a 3000% increase in the performance of that dashboard page
because we were able to eliminate so much of that legacy
code, and we saw that our deploy times -- we got things
through our approval queue and into the deployment queue in

an hour. They still had to wait to go through the formal
deployment process, because we hadn't changed the way that
we deployed the frontend, but suddenly our iteration time went
down to borderline zero. By IBM standards, it was zero,
statistically speaking. We got really excited about this, and |
started understanding the potential for what this could mean
for teams. So when | left, | was actually surprised that people
only thought the Jamstack was useful for personal blogs,
because my first introduction to it was rebuilding an app at
IBM.

Fast forward to today and what we're starting to see is that
more and more companies are starting to embrace this idea
that the Jamstack is a pattern you can use. We're seeing third
party tools, like MongoDB has a headless option, WordPress
has a headless option, most of the CMSs that are launching
today are headless by default. We are seeing tons of APIl-as-a-
service platforms stand up, and those are just completely built
for the Jamstack approach. You build a frontend, you speak to
the APIs with your frontend, and you deploy the frontend
separately. That's a Jamstack site. We've seen everything.
People are building ecommerce stores. People are building
really impressive things, like the Spring team is building their
sites as Jamstack sites -- these are thousands of user sites
being deployed from their advanced setup. We've even seen
things like the Twilio team replace their console, so the Twilio
console now runs on Netlify as a Jamstack site.

You can really take the complexity of this to “anything that
you're building for the web, you can build on Jamstack,”
because when you extend that default, you've got all the
options of what a traditional single page app built with
JavaScript would afford you. A lot of these teams were just
using a container to deploy a single page app. Put it on
Jamstack, and now your single page app deploys in half the
time. So | would say the capabilities here are limited to what
you can build on the web.

Let’s talk about what you do at Netlify, which is working on
developer experience. It's something that people talk
about a lot. What’s your understanding of what has
happened in the last few years that has made developer
experience such a big thing, and why is Jamstack so key
to it, besides maybe faster deploys?

The biggest thing that | noticed is that we saw a shift from
companies using the web as an augmentation to their business
strategy to -- especially when 2020 rolled around -- the web
being the driving force of their strategy. With every company,
we saw an explosion of online retail in 2020 because
everybody had to go online because we couldn't go inside
anymore.

| think that shift means that just about every company now is
either hiring full-time web developers or working with web
development contractors, and in all of those cases, the thing
that they're building is a direct result of the experience that
those developers have. If you've got developers using tools
that they're excited about, that are easy, that provide them with
the right level of abstraction where they're focusing on building
features instead of on dealing with the overhead and
boilerplate and the kind of meta work of keeping the lights on
for a project, you are able to ship features faster, and you have
lower turnover, because your devs aren't frustrated by process.
They're not frustrated by “Oh, if | want to move to a new
computer, | got to do three hours of setup work to get this app
running” or something like that.

| think that the drive to online really helped the whole world
refocus on the fact that developers are driving commerce.
They're driving the economy right now at every level. Even
hotels, their whole experience now is through apps and using
your phone to open your hotel room door. That's all built by
developers. So you want your developers to have good tools,
because it's your hiring strategy, it's your retention strategy, it's
your iterative strategy, it's the way that you lower your go-to-
market time. All those things come directly from providing your
developers with tools that they're excited about, that they can
use easily, and that set up good defaults so that, if your
developers take every shortcut in the world, the user
experience should still be good. That's what we're trying to set
up with the Jamstack. As an ecosystem, how do we make it so
that, if a developer shows up and takes every shortcut
available to them, they're still going to make a high-
performance site that's maintainable into the future and that
doesn't take forever to deploy?

One idea we are noodling with is that Netlify and to an
extent Vercel are like modern versions of Heroku, being a
wrapper around a bunch of other tools and services that

make it super easy to get started no matter who you are as
a developer. Does that analogy resonate with you? Do you
think that there are things that Netlify is doing better than
Heroku did, or if there are any lessons to be learned from
Heroku as a phenomenon?

Heroku is absolutely an inspiration for Netlify and Vercel and
Fly.io and all these other companies. They're kind of “how do
we take a thing that everybody has to do and make it less
painful.” What I've found interesting about the Heroku model is
they looked at something that was causing somebody pain,
and they looked at not the end user, which is | think where a lot
of companies will default to. It's like, “Well, what is our
customers’ experience? How do we make their pain less?”

They instead looked at the middle. They said, “Well, what's
causing that customer pain? Customers are frustrated because
we don't roll out updates. Customers are frustrated because
the app is slow. Okay, well, why is the app slow? Why does it
take us so long to get updates out? Well, it turns out our
developers are burning a bunch of time on this configuration
and boilerplate and setup, and if we eliminate that, we
downstream get these great customer benefits.” Heroku looked
at the middle of the stack and said, “We can get rid of
container config and wiring up these infrastructure services
and auto provisioning things.” | think they did a great job for
the era that they came up in. As we've iterated as an industry,
we all learned from Heroku, and every company is now
focused a little bit more on, “Can we get a Heroku-like
experience?”

Netlify came in and said, “Okay, now that all these systems are
even easier to spin up and deploy and designed for this idea of
being provisioned and configured remotely and being like a
base for a layer of abstraction instead of needing to be right up
in the developer's face, can we take that a step further? Can
we iterate on this idea of making the problems that developers
have into a clean set of defaults, so that developers don't have
to waste any cognitive energy or time on the things that don't
change?” When you have a website, you need that website to
go up on the internet. You need a way to roll back. You need a
way to do versions. You need a way to share a preview with
somebody. All those things need to be true in a high
performing team. So let's just make all that stuff a default. It
just happens when you use Netlify. Now developers are
spending even less time worrying about the configuration and

the boilerplate and the setup and the maintenance. They can
just focus on features, and all that rolls downstream to
customer benefits. That's where | would say we picked up the
baton and ran with it, building on the foundation that
companies like Heroku laid.

So everybody moved towards trying to have a Heroku-like
experience, trying to abstract away certain things that they
figured out developers didn't want to have to manually
configure every time.

Exactly. It wasn't really that long ago in the grand scheme of
things that everybody had a room full of servers in their office.
Those are now commoditized. You don't really need to
maintain your own server. The only reason to do it is if you're
at such a scale that the trade-off between paying full-time
people to maintain your server racks dips below the markup
that you're paying to a cloud hosting company, or if you have to
be at such a high scale or you have really, really edge case
requirements. The vast majority of companies just aren't there.
So yeah, use the commoditized thing. Let's spin up GCP or
Azure or AWS and let all of that infra go away.

If that's the case, then we can build layers on top of it, because
everybody was going to use it anyway and take away your
need to have to configure that stuff. Kubernetes is kind of like
that. You build companies on top of Kubernetes, and then
people don't even need to know that they're using containers
or Kubernetes or any of that stuff. They just say, “Well, | need a
server.” In Netlify's case, we saw that for websites so much of
that stack has been completely commoditized. We know we
need a CDN. We know we need good DNS. We know we need
an efficient way to deliver things. We know we need the ability
to recover if something goes wrong. All those things are going
to be true. So you can build it yourself or you can pay a little bit
of money to Netlify, and in most cases, you'll pay significantly
less to Netlify than you would pay to a developer on your staff
to solve that same problem.

In the last few years, AWS has put out stuff that's vaguely
along the same lines as Vercel and Netlify, like Amplify
and App Runner. What’s your take on those, and what
would Netlify's positioning be vis-a-vis that option?

| think what everybody's trying to do right now is find the right
way to onboard people into a new way of working. Depending

on what the company's doing, their incentives are different. In
AWS's case, their incentive is to build an abstraction on top of
AWS technology so that people who are in the AWS ecosystem
have a quick on-ramp into using their tools. Amplify is that. You
have a preconfigured bundle of AWS services that, if you go
through that on-ramp, you have a really good experience. |
mean, it's great. They've done a really good job. What I've
found is that there's a little bit of a cliff where you'll exceed
what Amplify was designed to do and then find yourself in the
pit of despair where you've now provisioned a bunch of AWS
services, Amplify can't help you solve the case that you need
because you've gone off the beaten path, and you've just been
hurled into the sea of services that were configured by a robot
that you've never seen before and you have to figure out how
to back that out and work through it.

What draws me to Netlify and services in the Netlify space is
that we're not trying to say, “We'll push the buttons for you, and
then when you're ready, they're your buttons.” We're saying,
“Let's not think about those buttons” -- the same way that the
vast majority of us aren't thinking about the fact that, when we
push a button on our keyboard, an electrical impulse is being
sent through a wire to the motherboard and that puts a
character on the screen. We don't have to think about that. We
just push the keys and we type to our friends and we're
searching things on the internet.

We want infrastructure for modern websites to feel the same
way. We want it to just disappear as an implementation detail,
because you don't need to care that you are using containers
or an S3 bucket versus an Azure web storage instance or
whatever that is. You should care that you've got files
accessible in a performant way. You should care that you've
got access to things like serverless functions and not
necessarily how those serverless functions are configured or
routed or scaled, but just that they work, and we'll scale up if
you need more and if you don't want to scale up, you can set
the limits in your account -- all those things that you want to do
to make sure that your website performs as it should. But we
don't want those implementation details to be a thing that you
ever really need to worry about.

That's a design choice that we make. The trade-off is that, on
AWS, they will happily send you off into the whole AWS
ecosystem and say, “Yeah, whatever you can figure out, you
can build.” With Netlify, what we say is, “Well, you've exceeded

what Netlify can do built-in. Here's a way that you can go get
those other services and wire them into Netlify.” But we're not
going to take the Netlify wrapper off and say, “Here, go do
whatever you want,” because in our opinion, that's not a
productive way to solve that problem.

It seems to me that the big point is just how big and
complex AWS has become, to where it’s actually
prohibitive to say, “Okay, we'll take off the training wheels.
You can build whatever you can figure out.” Have we
reached a point where that’s too big of an ask for the
majority of developers?

It's a sign of AWS's success that they've been able to launch
SO many services, but | also think that it has shown itself as a
real challenge for them. You've got companies that make their
entire living off of just getting paid to sort out Amazon bills.
Corey Quinn from the Duckbill Group -- their whole business is
they will come in and look at your Amazon bill and help you
understand where you spent money and why. When a service
hits that level of complexity, it's clear you can build anything
you want on AWS, but it's also clear that you can accidentally
shoot yourself in the foot.

You'll see a lot of really heartbreaking stories of students who
are trying to learn, and they accidentally run up a $40,000
AWS bill because they turned the service on as part of a
tutorial and didn't realize how expensive it was and let it run.
Those sorts of things are really hard, because that it's real
money when you run that service. It's not like Amazon's just
charging you for nothing. They spent all that money, and
they're just charging you back. It's a very challenging place to
be when it really is like going in with no safety net at all. You're
in these services, and if you don't get what you're doing, you
can really get yourself into a pickle.

| think that we're looking for the next layer of abstraction. How
do we make cloud services safer? How do we let a web dev
who has just joined a team push to production with no risk that
you're going to accidentally run up a $40,000 bill if you don't
pay attention to your AWS account for two weeks?

I've noticed Netlify is a sponsor of various frameworks and
other open source projects. I'd love to hear from you
about why that is important and what that does for Netlify,
for Netlify users and for the ecosystem as a whole.

Our intention with sponsoring projects is we really want to be
good citizens in the open source ecosystem. Open source
moves everything forward. If we didn't have all the people who
volunteer their time to work on these projects, we would be just
so far behind where we are now. We want to make sure that
Netlify is not taking advantage of that labor, and we want to set
a good example by trying to pay back into the systems that
we're benefiting from. So for us, it's really important that we
reinvest into the open source ecosystem and give back to
these projects because Netlify's strength is its ecosystem.

The breadth and depth of expertise in the Jamstack ecosystem
-- that modern web ecosystem -- is unbelievable, and what
makes Netlify powerful is that you can take any one of those
pieces and deploy it to Netlify. What we're trying to do is align
incentives. We want to invest in open source frameworks so
that they are sustainable, because for us, competition is good.
We want more frameworks, more options in the ecosystem,
because that's going to push the whole web forward. We want
to be close partners with these frameworks so that they are
interested in trying to make things work really well on Netlify,
because we want to have the best deployment experience. We
want every framework out there to work really well on Netlify,
so we're trying to align ourselves as closely as we can there.

The other piece of it, too, is we believe that, as teams mature
and grow, it's significantly more challenging to standardize on
one stack in a big company. The idea of trying to go all in on
just Angular or just Next, or just whatever, you name it -- you're
going to find yourself with a lot of cases where you're either
using way too much machine for the thing you're trying to
build, or you're going to have rogue cells inside of your
company that are going to say, “Well, we don't want to use that
main framework. We're going to use this other one.” If you've
built your entire infrastructure around one stack, you are then
setting these other teams up to fail. You're setting yourself up
to be really fragile when the ecosystem shifts in the future. So
Netlify is looking at -- to borrow a phrase from Nassim Nicholas
Taleb -- being anti-fragile with the way that they've set up their
stack.

For us, that broad experience and broad compatibility with the
ecosystem is the key to that. We will evolve with you as you go
through whatever iteration. Your head architect quits, the next
one who comes in wants to change the whole stack -- fine. You

don't have to rebuild your whole infrastructure as well. We've
already got you covered. That's | would say our biggest
differentiator and the thing that we're most excited about is: the
fact that, as developers continue on the maturity curve and
want to use other tools, they can just do that. We're not saying,
“Well, you should use this because this is the one that we built
and it's the best.” We're instead saying, “Yeah, use whatever
you want. We work with all these frameworks, and we're super
invested in their success. So please bring all of your projects
to us. We want them to work.”

You were saying that at IBM, the Jamstack approach
emerged in the shadow of this larger monolithic system.
Within huge companies like IBM, where do you see
potentially Jamstack-like approaches emerging most
readily internally today? Are there still places at these
companies where it's going to be hard to make that work?

At a certain level, it all becomes a political discussion, so it
depends on how open the people are in the decision making
spaces. But there are what I've seen to be really common
inroads if a company is trying to adopt this. Typically modern
docs teams are developing a kind of docs-as-code approach,
where they're writing markdown and that allows for really quick
review and a history because they can do it all in GitHub. If
you're writing in markdown, the Jamstack is a really natural
companion, because all the build tools for markdown are
Jamstack-generated. You can deploy your docs site as a really
quick way to experiment with this and see how quickly you can
get things live and how collaborative and productive people
are. Then marketing sites are another good target for
experimentation. If you want to stand up a landing page, you
need a lot of iteration. You got to switch out advertisements
every day. You got to change eyebrow banners or do
personalization stuff. There's a lot of options for quickly
deploying these things and getting them up and iterating fast.

What I've also noticed is that a lot of teams are using it as an
experiment. On their hack day, they'll rebuild a page of their
dashboard using this Jamstack approach and they'll be able to
get a feature-complete page of their dashboard in one hack
day. That to me is mind blowing. That's actually what
happened at IBM. We did an internal, like, “Okay, let's spend
two days on this project, see what we can build.” And we
reimplemented the whole thing and got it shipped to a staging
branch, and then we went and showed the rest of the team.

They were like, “How did you do this? When did you have time
to do this?” When we explained what happened, they were
like, “Okay, we got to figure out how to make this work,” at
which point, honestly, the rest of my job at IBM was educating
other teams internally on how to make this switch.

I'll be honest. | got a lot of pushback because people know
what they know. When you go to a DevOps person who is
comfortable with the back-end way of deploying, you have to
present it in a way that's saying, “I'm not trying to change
everything you're doing. I'm not trying to break your flow. I'm
trying to take things off your plate. I'm trying to improve the
security and decrease the amount of release engineering that
you have to do and the just general busywork that you're
doing, so that you can focus on the stuff that's important, like
the security of our back-end systems and those sorts of things
that are way more critical than whether or not we can update
the home page.”

That helps me understand the strategy of focusing on
developer experience as a way of encouraging
generational change in organizations, so people coming
into organizations think about this as a way to build
websites.

| think that goes back to what you were saying about why
developer experience is so important now, why people are
focusing on it. We're seeing more and more changes driven by
developers. They'll go to their managers and to their VPs and
they'll say, “Look, we want these tools.” It's hard for someone
when everybody on your team is saying, “We'll be faster if you
just let us have this tool.” It's really hard not to use it. For most
companies, it's a no brainer. Swipe the credit card, get them
the tool they need, and let them be fast.

If you're a company trying to sell, and you work with
companies that do development, getting that developer
experience so good that the developers advocate for it within
the company -- that’s your best sales motion. You talk about
product-led growth or companies that go that way, your best
opportunity is to get such loyal fans of the way that you do
business that they're going to go fight for you internally. Then
you don't need to have cold sales calls. You have warm
inbound leads because everybody's going, “Our developers
are screaming for this. They want it. How do we get this set
up?”

I'd love to talk about APIs as the “a” in Jamstack.
Obviously, you and Netlify can’t endorse any specific
APls, but to what degree have you seen the emergence of
developer preferences for specific ones in different areas?
Some developers we’ve talked to will use whatever the
client wants, but a few say they’ll always use this for
security authentication or that for search.

| think everybody's got their favorite flavors, so you see
loyalism in that sense. ‘| like what | like because it's the thing |
know, and I'm fast with it, and | can get a lot done.”

What I'm seeing is a strong inclination to move toward
companies that focus on their APIs as their primary layer of
interaction. When they're shipping it like that, you can see that,
say, Sanity -- the CMS -- has a huge focus on the developers
who use Sanity, and you can see that in the way that people
advocate for it. Developers love working with Sanity. Contentful
is another one. They have a huge focus on a GraphQL API,
and they've got great docs for getting you started, and that is a
big winner. You can see why those companies are dominating
in the market and why they're so popular. Stripe is another
great example. They took something that was easily the most
intimidating thing about working on the web, which was taking
payments. They focused on making a really developer-friendly
API, and suddenly developers are like, “Oh, of course I'm
going to use Stripe.” They absolutely cornered that market.

| think it's less about, “I'm going to use this because it's my
favorite” or “I must use this,” and it's more that when a
company really nails that experience of “we built this to solve
your problems and get everything else out of the way,” you can
see developers respond to that.

Are there disadvantages to the headless APl approach?
One thing we've heard is that non-technical marketers
don't always love working in, say, Prismic, which can be a
little more annoying than WordPress if you are totally new
to it.

Let me answer this directly, and then I'll do a more indirect
answer as well.

Directly, the biggest trade-off is that, for CMSs that were built
as API-first and aren't focused on non-developer use cases,

you lose some things that you might be used to if you're, say, a
WordPress developer. You don't get instant previews, you don't
get some of these more “table stakes” things for CMSs that a
marketer would be looking for. They'll be like, “Where is my
ability to look at this before | publish it? Where is my ability to
share this with somebody to get feedback?” Those sorts of
things do exist, and they can always be built, but with certain
tools, you find yourself having to implement your own.

Now the more roundabout answer here is that | think what we
saw in a pre-Jamstack world was a constant tension between
the marketing team and the development team. Depending on
who was higher up in the food chain that made the decisions,
you would see a tool get optimized for whichever team they
aligned most with. So if the CMO was making the decision and
they came from a content marketing background, you're going
to see somebody in Sitecore or in Adobe Experience Manager
-- one of these really CMS-focused things, but when the
developers get into it, they're just sad. They're frustrated all the
time. They have a hard time working with it. There's a lot of
hoops to jump through. Then vice versa, you would see
companies that say, “Well, we're run by developers, so we're
going to build a developer experience,” and the marketers get
thrown into GitHub repos and into working with APls directly.
You've got marketers trying to write SQL queries to pull things
that they need, and it's like, “This is maybe not the best way to
solve this problem.”

What | like about the Jamstack approach is that we're making it
less of that trade. You can go use WordPress as your headless
CMS, so the developers get an API-based “do whatever you
want, build the way you want to build,” but the marketers still
get that really good WordPress admin situation. You get to pick
and choose your tools to best match what you're doing.

You also lose this other trade-off that | think is really frustrating
for people, where you've got WordPress, which is a really good
CMS, and you've got Shopify, which is really good for
ecommerce, but you don't really want to use Shopify's blogging
tools and you don't really want to use WordPress's ecommerce
tools, because they're both kind of bolted on to the main core
feature. In a headless world, you can just combine the two.
You have a store page that pulls from Shopify APls, you have a
blog page that pulls from WordPress, and everybody's happy.
Everybody gets that really good admin experience on the CMS
side for both Shopify and WordPress, and the developers get

APIs with data, and they get to build with whatever frontend in
a really consistent and predictable way, despite pulling from
two completely different systems. | think that's really beneficial
and helpful.

What kinds of things would need to happen for headless
WordPress to be the primary way that WordPress is
delivered? Or headless Shopify? | assume that for the
average mom-and-pop that went online because of COVID,
it might be too big of an ask to set up headless Shopify.
What's the roadmap -- if there is one -- for that becoming
more popular?

| think the thing that we're missing is the companies that
commoditize it. With WordPress you had Automattic the
company, and then you had ecosystem companies like
WooThemes or Envato. They built these huge marketplaces
around plug and play WordPress plugins and themes and add-
ons and all these different features. | could go shopping and
say, "Yeah, | want a forum. | want an E-commerce store. | want
moderator controls. | want better SEO." | click all these
buttons. My site gets auto-configured, and I've never looked at
code.

This model is clearly what we're heading toward. We're not
seeing new companies ship monolithic CMSs, or at least not
very many. Even WordPress would prefer that we didn't use
WordPress as an API, | think, at least from the outward
messaging I've seen. They've built a really good API. They've
got really good tools around how to use it in headless mode,
because | think the writing is on the wall. Developers are
making the choices now, and they don't want to work with a lot
of stitch-together monolithic CMSs. They want to work with
APls.

My assumption is that, now that we've seen that, the market is
aware of that. We're going to see people start to target the
commoditization of headless site building. We can see this in a
few places. There are some companies that are standing up.
There's Vue Storefront, which is like, "Hey, you want a
Jamstack-friendly ecommerce store? Click a few buttons and
you get that." We've got agencies that are really specialized in
this, for the more corporate companies that want to make the
switch. We've got more of those plug and play tools starting to
show up in companies like Spring, which is very similar to
Shopify in that you show up and just say "I want a store," and it

just spins up. That's built as a Jamstack site. They're moving
that way.

My suspicion is that we'll see that, as the ROI of using the
Jamstack starts to become more apparent -- and we've got
that ROI report that just came out with Forrester that shows a
huge return on investment for switching to the Jamstack -- and
as those results get repeated and it becomes more
commonplace, we'll see even the people who don't really want
to do it start defaulting to headless, because it'll cost them less
to run their services. It increases their margin.

Say you were to build a headless ecommerce that does
use Shopify as a backend but is built via Jamstack. The
other big advantage is that you're not limited in any way to
the Shopify ecosystem for what you want to do with
marketing, page experience, card abandonment, whatever.
Basically you're opening it up such that you can use any
APl in the Jamstack universe versus just what's on
Shopify. Is that fair to say?

| think what's exciting about that is it's setting up a world where
we can build without walled gardens. Something that we're
feeling the pain from right now, if you look at recent lawsuits
and companies complaining about it, is like the Apple App
Store. We've basically forced an entire generation of
companies to agree to pay 30% of everything they make,
because there's no option. You can't sell things on an iPhone
or an Apple device without paying that toll. | think that people
are frustrated by that.

The Jamstack prevents a single, large company from
completely building a walled garden. They're going to offer
great services, and people are going to be willing to pay a
markup to get those services. It prevents what | think
happened on Apple, where there are things that we actively
dislike and we still have to pay a 30% markup to use them,
because there's literally no option. | think this is better for
competition. It's better for innovation, because companies are
incentivized to build great things. We're going to pay the
markup to them for using their ecosystem when the quality is
there. When they don't deliver on the promises, or when they
don't have something that we need, we're not stuck. We can
reach somewhere else and use the thing that meets our needs.
That's going to push competitors in the space to improve their
offerings.

It's the right kind of growth. It's the right kind of competitive
pressure that's going to continually improve this marketplace.
To me that's probably one of the most exciting things. As
developers, we win by using this open approach versus getting
into the monolithic approaches where we're stuck with
whatever the providers give to us, because there's no pressure
on them to improve that. We can't go anywhere else.

Something that comes up in talking about Jamstack is this
idea that there's a lot of cyclical things in software
development. Like you said, Envato and all these plugin
marketplaces and themes recurring, but in a very updated,
modern way.

There's a quote that I've been referring back to a lot as | have
these conversations, because it definitely does on the surface
feel like we're walking in circles a little bit. It's a Herman Hesse
quote from the book Siddhartha: "We are not going in circles,
we're going upwards. The path is a spiral; we've already
climbed many steps."

| think we're going around, but what we did with WordPress
fifteen years ago is what was possible fifteen years ago. We hit
the limitations, and then we explored a different avenue. We hit
the limitations of that, and now we're saying, "Okay, so now we
want to do all the things that were good about WordPress, but
the industry has advanced since that era. So we can do more,
but let's take the good ideas and build them back in here." We
loop back around, but with all the good things that we've
learned along the way. We move between a set of concepts,
but each time that concept that we're revisiting is aided by all
of the context that comes from having lived through the last
iteration of that concept.

| would agree we're moving back toward marketplaces and all
those things, but my hope is that they're more portable. We're
not going to see, say, Sanity themes. | don't think that's the
way this is going to work. | think we're going to see blog
themes. You can swap out your headless CMS. You can swap
out your ecommerce provider. All of those things are going to
be set up in a way where you, as the consumer, have the
ability to choose which tools you want to work with for your
dashboard and for your management. Because it's all built on
APls, the theme developers can build adapters: “Here's what a
Shopify product looks like; I'm going to convert that into a

generic product data structure. Here's what a big commerce
product looks like; we'll put into the same generic data
structure. Now my themes can be built with any product from
any backend.” All we have to do is this little bit of data munging
to get it into the standard product format, which all these tools
are going to provide if they're ecommerce.

That's the really exciting innovation that we're headed toward:
this idea of not just a marketplace for one tool, but a
marketplace for all web development. That's opened up
because of this API-first approach.

Disclaimers

This transcript is for information purposes only and does not
constitute advice of any type or trade recommendation and
should not form the basis of any investment decision. Sacra
accepts no liability for the transcript or for any errors,
omissions or inaccuracies in respect of it. The views of the
experts expressed in the transcript are those of the experts
and they are not endorsed by, nor do they represent the
opinion of Sacra. Sacra reserves all copyright, intellectual
property rights in the transcript. Any modification, copying,
displaying, distributing, transmitting, publishing, licensing,
creating derivative works from, or selling any transcript is
Strictly prohibited.

