P

SACRA

EXPERT INTERVIEW UPDATED
02/23/2022

Jamund Ferguson, senior
engineer at PayPal, on using
Jamstack 1n the enterprise

TEAM

Jan-Erik Asplund
Co-Founder
jan@sacra.com

DISCLAIMERS

This report is for information purposes only and is not to be used or considered as an offer or the solicitation of an offer
to sell or to buy or subscribe for securities or other financial instruments. Nothing in this report constitutes investment,
legal, accounting or tax advice or a representation that any investment or strategy is suitable or appropriate to your
individual circumstances or otherwise constitutes a personal trade recommendation to you.

This research report has been prepared solely by Sacra and should not be considered a product of any person or entity
that makes such report available, if any.

Information and opinions presented in the sections of the report were obtained or derived from sources Sacra believes
are reliable, but Sacra makes no representation as to their accuracy or completeness. Past performance should not be
taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is
made regarding future performance. Information, opinions and estimates contained in this report reflect a determination
at its original date of publication by Sacra and are subject to change without notice.

Sacra accepts no liability for loss arising from the use of the material presented in this report, except that this exclusion
of liability does not apply to the extent that liability arises under specific statutes or regulations applicable to Sacra. Sacra
may have issued, and may in the future issue, other reports that are inconsistent with, and reach different conclusions
from, the information presented in this report. Those reports reflect different assumptions, views and analytical methods
of the analysts who prepared them and Sacra is under no obligation to ensure that such other reports are brought to the
attention of any recipient of this report.

All rights reserved. All material presented in this report, unless specifically indicated otherwise is under copyright to
Sacra. Sacra reserves any and all intellectual property rights in the report. All trademarks, service marks and logos used
in this report are trademarks or service marks or registered trademarks or service marks of Sacra. Any modification,
copying, displaying, distributing, transmitting, publishing, licensing, creating derivative works from, or selling any report is
strictly prohibited. None of the material, nor its content, nor any copy of it, may be altered in any way, transmitted to,
copied or distributed to any other party, without the prior express written permission of Sacra. Any unauthorized
duplication, redistribution or disclosure of this report will result in prosecution.

WWW.SacCra.com

mailto:jan@sacra.com
https://www.sacra.com/

Published on Feb 23rd, 2022

Jamund Ferguson, senior engineer
at PayPal, on using Jamstack in the
enterprise

By Jan-Erik Asplund

EXPERT INTERVIEW

Jamund

Ferguson

Sr. Engineer
PayPal

Background

Jamund Ferguson is a Senior Staff Developer Relations

Engineer at PayPal. We chatted with Jamund because of his
background of working with deployments of Jamstack in the
enterprise, as well as front-end development more generally.

Interview

Could you start by giving us a definition of Jamstack?

Jamstack is an acronym that was started by Netlify for
“JavaScript,” “APls,” and “markup” -- basically, HTML websites
that use JavaScript to add interactivity and call APIs to get that
data. Another term for it that | prefer is “static web apps.” You
have these apps that are interactive websites that are formed
with static markup, as opposed to being generated on the
server. Most of the websites out there are dynamically
generated on the server. When you make a request, these
static web apps or Jamstack apps are built in advance, so all

the HTML is generated in advance, and they're usually
delivered with a content delivery network. The idea is that
they're going to be very, very fast because all the content is
sitting as close to the consumer as possible, as opposed to in
some data center -- maybe in AWS or wherever -- but not
necessarily as close to your customer as it could be.
Jamstack | think was somewhat of a marketing term, but it
really caught fire. A lot of engineers, especially front-end
engineers and React developers, were like, “Yes. Give me the
power | need as a front-end developer to be able to deliver
websites and not have to worry about servers and all that
complicated business.” That's roughly my take on it, anyway.

Why now? What are the underlying developments and
trends that have emerged that made this happen in the last
couple of years?

| think one of the biggest things is the growth of these content
delivery networks. Obviously, old school CDNs like Akamai
serve media assets and have done that for a long time. But
there's been a lot more interest -- companies like Cloudflare
and Netlify and others that are pushing out more and more
data to the edge, closer to the users. This is an ongoing trend.
You also have this serverless trend of being able to deploy
advanced websites and APls and technology like that without
necessarily having to be worrying about maintaining the
servers.

And then a couple other forces are happening. One, front-end
website development is getting more advanced and more
complex. You have tools like React that are being embraced
wildly, and people are creating really complex and interesting
websites with them. So you have these front-end web
developers that are really, really good at learning all the ins
and outs of the frontend and maybe have very little backend
experience and very little experience with PHP or Java
servers. They built their front-end app all using React, and they
just want to get that out there to the customers.

And then one other thing that has come along is a push for
web performance and a demand that our websites get faster,
especially as there are more mobile users and more users as
the web continues to grow throughout the world. You want
these websites to be accessible and fast to everybody out
there. We've seen that the traditional model of building

websites maybe isn't quite as fast or as optimized as it could
be. So there's been a lot of push, at least in the web
development community, about how can we get things to users
as fast as possible? And then, how can | build out these sites
as easily as possible?

How did you get into Jamstack, and what kinds of projects
do you use it for?

| gave a talk about this at QCon a couple years ago.
Essentially my interest in Jamstack started with a frustration
with our Node.js application architecture. At PayPal, we were
pretty early adopters of Node.js at the enterprise level. | mean,
we have thousands and thousands of servers and at least
hundreds of applications out there powering all sorts of
different user experiences based on Node.js and the Kraken
framework that we use, and it has worked fairly well.

Previously when | was working at PayPal -- I've rejoined since
then -- | was working on our Send Money page. What | found
was that deploying that application to hundreds of servers
through multiple data centers ended up taking a really, really
long time. And many, many times the stuff that | was deploying
was essentially just updates to the website, so just JavaScript
assets or Ul assets, HTML, CSS. That required redeploying
these whole servers across many different places, which was a
multi-hour process. We had a slow deploy process. Not
necessarily unique to our situation -- it was fairly standard at
the time, but unfortunately it was not very fun, so | was
frustrated with that.

The other thing that frustrated me with our setup at the time
was that we had a lot of server crashes. Oftentimes we would
run into problems, and there'd be all sorts of different things
that could cause these. PayPal is running in many different
languages, but there'd be certain times that someone would
request something in a language that we didn't support. In
some cases that would crash the server. We have hundreds of
these servers running, so one crashing isn't causing any
significant downtime, but it would bring down that request, as
well as any other requests being handled on that particular
server instance. So we were running into problems maintaining
Node.js at that huge scale.

There were other people trying to figure out how to make
Node.js and our implementation more stable, and we've

definitely made progress there. And some teams were working
on how to make our deploys faster, and they’ve since made
progress there as well. | was looking at it really from the
perspective of a front-end engineer saying, “I mostly just want
to update front-end assets. | don't even care about the
backend or the APIs. Those can be separate. Can we
decouple our APls from our markup -- the sort of Jamstack
idea -- and maybe quickly deploy our markup and static assets
and then deal with the APIs separately?”

For me, the focus was partially on the developer experience.
As a front-end engineer, | don't want to have to have these
slow deploy times for just updating some Ul assets. And then
also the stability factor. With Jamstack, you pre-compile your
stuff and put it up on the internet as just static HTML for the
most part, so it's very stable. It doesn't go down, really. It's just
a file that someone downloads. So that's what got me into it.
And then, as | shared in that talk, we did a lot of exploring of it
at PayPal. We looked at our paypal.me site, which is a super
popular way for people to send money, and we did some
experiments there, and it was very interesting.

There’s a lot of details that | don't want to get into necessarily
here, but | will say that, overall, | think that the company
ultimately found other ways to address the problems that drew
me to Jamstack. | didn't end up staying for that full process of
testing that out. But it was really cool. | was really happy with
our experiments. We ended up using the Gatsby framework to
test this out, and what we found at PayPal at least was we
were able to deploy things really, really quickly like | wanted,
and the instance of paypal.me, for example, that was running
on this platform was super fast. So the websites were faster, it
was deployed faster, and the developer experience and the
user experience benefits were there.

For a whole bunch of reasons, it didn't end up getting full
adoption within the company. | think enterprise adoption of
Jamstack is actually tough, and maybe we can talk about that.
But overall it was a great experiment. I'm really happy that we
were able to go down that path. | ended up, like | said, leaving
PayPal around that time. | came back later and was a little sad
that it never took off as the primary way we were building
websites internally. We do still have some Jamstack sites. Our
developer documentation is built on Gatsby using a similar
technique. But it didn't take off as a primary platform for us.
We're still mostly using Node.js for our application layer.

We've heard a couple times now that people love being
able to start out projects and have them be performant
really quickly within Jamstack or using Vercel or Netlify.
This might tie into your point about enterprise adoption,
but can you build fully featured apps as easily? And if not,
what prevents that from happening?

| think that there are some interesting trade-offs when it comes
to Jamstack. The static web app approach means that, if
you're having a fully dynamic thing, that's going to be harder.
Let me take you to another example. | left PayPal and went to
a startup for a while. | was still really excited about Jamstack
there. At the startup, we were using headless WordPress,
which is still kind of Jamstack-ish stuff. | didn't last there very
long and ended up at Amazon in the seller central org. There |
was working on building sites to help people sell their products
on Amazon.

It was the most interesting thing to me. Basically, the Jamstack
technique that | had proposed at PayPal -- we already were
doing the same thing at Amazon. It wasn't widely celebrated as
Jamstack, but it was essentially Jamstack. We were able to
deploy static apps and deploy APIs separately. There was a
layer there that essentially said, “Look, you could be a static
app. You could be a server app. It all runs through this single
interface that basically sets up your web server for you.” So the
technique that | had been trying to pioneer within PayPal, we
ended up using at Amazon.

What | found that was really, really frustrating is: it turns out at
Amazon and a lot of places, we do a lot of dynamic stuff, so
every user experience is very custom to a specific person.
What that means is, instead of having a static site where you
just immediately get the data because it's at a local CDN to
you, we deliver to every single person a static outline of a
page, and then we hit an API trying to get content. So you just
got a lot of loading spinners. | ended up focusing a lot of my
time at Amazon working in web performance, and it was
basically how to get rid of these loading spinners and make
stuff faster.

In many cases that meant trying to nudge people away from
that Jamstack approach and toward a more traditional server-
rendered approach, hopefully without losing too much of the
developer experience wins because front-end developers

absolutely love the Jamstack. It's so much easier for them than
having to think about a server the whole time. By the way,
that's where | think Next.js has done a great job of saying,
“We'll basically give you the developer experience of Jamstack
and you only have to think about building your front-end web
app, but also server capabilities that are pretty easy and
seamless to use.”

What is the path forward that you see for enterprise
Jamstack? What would have to change in order for
Jamstack to start eating up enterprise use cases?

Let me give you a very niche issue that we actually ran into. |
don't know if Amazon ran into it, but we definitely ran into it at
PayPal. And | think it is kind of related, which is that both
companies -- PayPal, Amazon -- have our own infrastructure.
In most cases, we're not just going to be like, “Oh yeah, I'm
just going to send this over to Vercel or Netlify.” We've got
really good internal services -- obviously Amazon has all of
AWS at its disposal. That being said, a lot of the specific
features you need to do Jamstack well require very specific
CDN capabilities, so your CDN has to be able to handle
authentication and do all this other stuff at the edge.

If you look at some of the more modern stuff -- like Cloudflare's
putting out additional edge computing and even storage
without sacrificing the simple development experience -- | think
that's where we struggled a little bit at PayPal. We had a
traditional CDN infrastructure, and it worked really well for just
plain static assets. But when you're putting up a website that
needs authentication, and it needs certain security -- you know,
CSREF tokens, all this kind of security stuff that you'd put in a
server-generated website -- you think, “How do | do that if I'm
on a traditional CDN that doesn't have the special capabilities
that maybe Netlify or some of these other providers have
available there?”

So | think those companies that have focused on Jamstack are
actually a little bit ahead of the game. I'm sure other places are
starting to play catch up and realizing that these are really
important features. With a number of these hosting providers,
there's a simple configuration that you can make that's just
very easy to do and that's way harder in a traditional Amazon
S3 bucket or something like that. There's a number of little
details that | think Netlify got right, and I'd argue Vercel and
others have figured out, to make it that much easier to do

Jamstack well, whereas if you're in a big company and you're
just trying to use traditional infrastructure, you don't have
access to the cutting-edge stuff, and it doesn't really work very
well. Both at Amazon and PayPal, we had a Jamstack-like
development experience, but the actual processing of that stuff
wasn't happening in the ideal way -- on the edge near the
customers -- but instead in our data centers in a more
traditional server format. We gave our developers a good
experience, but it ended up not necessarily being the optimal
experience for the users. That's where | think those cutting-
edge hosting providers are still continuing to be ahead. If you
look at what they're trying to do with Amplify at AWS, they're
trying to be like all these other companies that have kind of
innovated before them. Firebase for example had a lot of these
features long before they were acquired by Google.

The way that | think about this is: these companies are
oftentimes based on top of AWS and existing cloud providers,
but what they've done is figure out a way better developer
experience, and they're essentially making that developer
experience an add-on that's worth paying a lot of money for. |
don't think there's anything super proprietary in the technology
from any of these providers. | do want to mention Cloudflare
again, because | think they've been really innovative about
how they're doing edge workers and things, which are really
interesting. | think there's some cool technology innovation.
But for the most part, | think they're just ahead of the curve in
thinking about what makes it easy for developers to be
successful quickly.

If you look at offerings like CloudFront from AWS, which are
more basic, or just generally putting data in an S3 bucket and
serving that, my guess is that all of those providers will
eventually have a very similar feature set as Netlify and
Cloudflare and other things. But it's taking a little while for the
big providers to get there. | think it'll be interesting once all the
big providers have the same features. Then it'll be easier for a
large enterprise company to say, “Well, look. We already pay
for this feature. We can just opt in.”

| know | went around the bush a lot on that, but I think right
now it's a lot easier for startups to say, “Let's go with Netlify,
let's go for Vercel,” and just let that scale them up to a big size.
But if you're already a big company with a lot of built-in
infrastructure, | think you'll find that the existing tool you have

might miss some of the key parts to make Jamstack successful
for you.

We've seen some parallels in how Vercel and Netlify build
on top of AWS to how Heroku set out to do something
similar twelve years ago but for a server world versus
serverless. Some consider Heroku to have failed. I’'m
curious if you see those as similar and if there are
mistakes that Heroku made that Netlify and Vercel are
managing to avoid or to improve on?

I'll be honest. I'm not a great business analyst, that's not my
take. So I'm not going to comment too much on that. | will say,
from a technical perspective, | think you hit the nail on the
head -- just focusing on different audiences, right? Heroku did
a fantastic job nailing developer experience for those Ruby
apps and Node.js and these other apps. They just did a great
job of making it easy to deploy those things. And they're still
somewhat the gold standard for just a simple deploy process.
People still respect what they're doing and what they've done.
As an engineer that's used Heroku a few times, | don't think
that they're completely flawless or whatever, but they’re pretty
good and much easier than trying to go on AWS and build out
my own thing. Any day I'll choose Heroku.

| think that they did well for the audience they were serving.
You could see that they started by focusing on startups -- |
think they came out of Y Combinator and all that stuff. So they
were living in that world the same way that Vercel and Netlify |
think are living in that world, focusing on startups, and you get
that same growth where, if you start with a startup and the
startup grows really big and you can continue to support that
growth, | think you're going to be able to grow tremendously. |
don't have any great business feedback there. To me, | think
they're basically just a modern version. | don't see any major
differences at a high level. | think they're vaguely targeting the
same areas. They're looking at basically selling great
developer experience to startups and then helping those
startups grow and grow with them.

My only thing with Heroku -- and to be honest, same a little bit
with Vercel -- is maybe you start with them as you start up, and
then as your startup grows, it seems like everyone ends up on
AWS or on the cloud, whatever. | couldn't see many big
companies being like, “Well, let's ditch AWS and just try out
this newcomer,” whatever that newcomer is. So | do think that

there may be an issue at a certain scale. How do you grow
your startup-focused business to support enterprises? That is
a challenge. Maybe Cloudflare has innovated enough and has
enough unique features that they may be doing well at that,
because | think they have some amazing stuff that they're
doing with being able to prevent denial of service attacks and
things like that. But honestly, | do think that that is a challenge.
Growing from small startup to medium business, sure. But
when you get to be a pretty large company, are you still going
to stay on a smaller platform versus building your own on top
of solid cloud infrastructure? | don't know.

People sometimes argue that Jamstack, perhaps partially
because of the marketing origins of the term, is a transient
trend. What I'm getting from this conversation, though, is
that underlying Jamstack is this architecture and this way
of building apps that is being adopted by AWS and
Cloudflare.

Azure has this big static web apps push right now. They've got
a whole DevRel team focused on static web apps. They have
events. Static web apps aren't going anywhere. The basic
technology there isn't going anywhere. | think where things are
interesting right now is there's so much innovation around
edge computing. Cloudflare is doing that with edge workers.
Vercel is doing that by making it easier to use edge workers
and that technology. And then Netlify is making it easier to use
serverless functions. So there's a lot of interesting technology
around edge computing and serverless broadly. | think
Jamstack started as this basic static web apps thing, and then
even Netlify started allowing serverless functions on their
platform, and Vercel is doing their edge middleware. So you've
got a lot of innovation happening in the space still. | don't see it
as done.

| think the core architecture of “| have a static website that |
want to put up and make it really, really fast” is a solid idea. If
you look at where people are using this technology, mostly it's
blogs, because it's static content. It works really well for blogs
and marketing kinds of pages, like a landing page. | want that
page to be as fast as possible. And then ecommerce as well,
where performance is really, really important. When you don't
have so much dynamic stuff in your ecommerce and it's not
super tailored to individual users, you can take advantage of
this to give your users really fast content. | think that's just a

few of many places that could continue to benefit from
Jamstack moving forward.

There's a little bit of interesting pushback right now, I'd say,
within the JavaScript community, because Gatsby was really a
forerunner. Everyone was adopting that, and they were the
main framework for building Jamstack apps. Then Next.js sort
of supported most of those same features plus additional
server rendering, and that overtook Gatsby in terms of
popularity in the community. Now there are several other
contenders. There's Astro, which is trying to be super fast and
fully static, but with support for progressively enhancing the
page with additional functionality. There are also static site
generators like 11ty that are quite good. Then you've got
Remix, which is being built by some really popular React
community leaders, and includes full server rendering
capabilities. We're seeing a little bit of pushback from static
site generation with heavy client-side applications back into
server-side rendering. But | think there's always going to be a
place for those static, Jamstack style apps.

To try and organize my thoughts a little bit, you have continuing
innovation in the edge space. Edge computing is something
that's still a little bit mystical to people, but it provides power
and server process and capabilities close to where your users
are, just like how CDNs put your content closer to users.
There's a lot of innovation happening there that's really cool.
You've got new frameworks coming out that are challenging
the notion of, “Well, maybe we want a little bit of server
capability alongside your static apps.” There's constant
innovation in the web space, but | think that static apps
absolutely have a place in the future. But it will be interesting
to see how these other forces take shape.

Looking at Blitz.js and RedwoodJsS, it seems like what's
emerging is a hybrid Jamstack or post-Jamstack. Is that
legible to you as a category?

| agree with you. | haven't used those specific tools, but you
have that. You also have the emergence of people that are
saying, “You know what? All these React-based frameworks,
we're sick of them. We want things to be even faster.” A lot of
the folks that push web components and really hardcore web
performance are saying, “Can we get these static site
generators to not generate any JavaScript?” Because the
problem is, even with these Jamstack sites, a lot of times

they're still very JavaScript-heavy, even if they're just
displaying content. It's all client-side rendered oftentimes, and
it can take longer than it really needs to just to display some
content on a page. So you do have this server-rendered set of
tools that you mentioned.

But there's also another set of tools that are static site
generators offering interactivity without paying as much of a
cost in terms of your web performance. Astro is one that I'm
very interested in right now. It'll fully static site generate your
page, but it still allows you to add interactivity without paying
as much of a performance penalty as maybe a Gatsby-type
tool would do. | think there's a little bit of renewed interest in,
“How can we do this Jamstack stuff without paying as much
client-side app penalty?”

Like | said, web performance has been a really interesting
driver of a lot of these trends, because Google is pushing their
web vitals as part of some of their SEO. You see a lot more
people -- especially in the ecommerce world and other worlds
that are really SEO-driven -- doing everything they can to
make their websites a little bit faster. So that's another trend
that | think is driving tools in a few different directions.

You've touched on ecommerce a few times. Do you see
this as potentially encouraging people to build Jamstack
ecommerce sites, maybe using Shopify as a back-end API
or some other API to host their products, and as a
headwind for Shopify itself? Does it seem like people will
start building their own stores using Jamstack versus
using Shopify?

| follow someone from the Wix team, @DanShappir, for
example. | know Wix isn't Shopify, but it’s a similar space. That
team is super focused. All those teams know that they need to
be really, really fast, so they're doing everything they can to
continue to optimize their stuff while allowing users to upload
horrendously oversized images or make whatever mistakes
that someone maybe less familiar with the space would do.
Then those tools try to do a pretty good job of optimizing them.

| think there is a continued interest in using Shopify or
WordPress or any kind of CMS as kind of a backend. And
you've got Contentful, of course, and other tools to allow you to
fully programmatically build your site and then drive content
from these easy to use CMSs. To me that seems like an

obvious continued area for growth. Essentially, you always are
going to have this disconnect between the people building your
website and the people generating the content or updating the
website. So thinking of ways to continue to allow you to build
amazing, fast, really cool looking apps and sites, but also
making it easy for people to update the content -- | think that's
clearly a trend that's going to continue to grow.

| don't have specific opinions about the ecommerce space. All |
can say is that I've seen a lot of posts recently from developers
sharing, “Here's how to build an ecommerce site using
whatever new technologies.” There's a lot of interest in that
right now. So | do think that what you're implying -- maybe
having some sort of backend to manage products and then
building custom Ul using Jamstack technologies -- sounds like
kind of a winner, but we'll have to see. | don't have a ton of
specific experience in that area, even though | work at PayPal
and feel like | should.

JavaScript had a reputation for being rather hard to work
with. I'd love to hear your take on how it has changed.
Also, what are some of the key things that make Next.js
different from just vanilla React?

If you look at the web development space over the last 15
years, in general you have one trend, which is absolutely
everyone is being more online. Every company is a tech
company these days. Everyone has to have a web interface.
There's just this constant growth of web development. At the
same time, you've seen React as a paradigm for building
websites just completely dominate the mind share of
developers. Many, many, many new websites are built in
React. | get that WordPress still is the complete leader of the
way that most of the sites out there are. That's fair. But in
terms of modern web development, you see React absolutely
dominating the way that many folks are building sites. React is
continuing to grow and has grown tremendously.

What | think was always the missing story was: how does that
React frontend connect with the backend of your website? We
had a lot of experience with this at PayPal, and I'm sure many
people have had experiences, where you have your Node.js
backend and then your React frontend, and they sort of tie
together. Your backend might be rendered using a templating
language and your frontend with React. It's like, “Oh, could |

use those same templates to render on the frontend and the
backend?”

There are all sorts of stabs at these isomorphic frameworks, as
they were called, where you could share code between your
frontend and your backend, and the same developer could be
building your frontend as well as your server. And | think
Next.js just really nailed the developer experience on that.
They catered the whole thing towards front-end developers, of
which there are just so many of these React developers, and
they made building a full stack website feel exactly like just
building the frontend that people were already familiar with. |
think that's how they've gained a lot of popularity -- just making
that experience really easy.

| think that what you see here with Vercel, Netlify and all these
things is that they're not necessarily doing anything that wasn't
already possible before. They're just nailing that development
experience. Developers are thinking, “When I'm doing
something hard, if there's an easy way to do it, I'm just going to
flock to the easier way to do it.” Next.js nailed that developer
experience for building full stack websites with server
components, and it's obviously taken off.

Then they've been able to effectively leverage that. People in
the Node.js community have known Guillermo and some of the
folks that work at Vercel forever, and they have a ton of
community respect, so people are already listening whenever
they're announcing things. I've been following them since the
early days of Zeit and before, when they worked on Cloudup
(which was acquired by Automattic) and Learnboost. When
people in the community are doing interesting things, we're
listening up, and we're definitely like, “Okay, this is probably
something | should check out.”

Disclaimers

This transcript is for information purposes only and does not
constitute advice of any type or trade recommendation and
should not form the basis of any investment decision. Sacra
accepts no liability for the transcript or for any errors,
omissions or inaccuracies in respect of it. The views of the
experts expressed in the transcript are those of the experts
and they are not endorsed by, nor do they represent the
opinion of Sacra. Sacra reserves all copyright, intellectual

property rights in the transcript. Any modification, copying,
displaying, distributing, transmitting, publishing, licensing,

creating derivative works from, or selling any transcript is
strictly prohibited.

