P

SACRA

EXPERT INTERVIEW UPDATED

Cole Krumbholz, founder at i
Formspree, on the future of full-
stack development

TEAM

Jan-Erik Asplund
Co-Founder
jan@sacra.com

DISCLAIMERS

This report is for information purposes only and is not to be used or considered as an offer or the solicitation of an offer
to sell or to buy or subscribe for securities or other financial instruments. Nothing in this report constitutes investment,
legal, accounting or tax advice or a representation that any investment or strategy is suitable or appropriate to your
individual circumstances or otherwise constitutes a personal trade recommendation to you.

This research report has been prepared solely by Sacra and should not be considered a product of any person or entity
that makes such report available, if any.

Information and opinions presented in the sections of the report were obtained or derived from sources Sacra believes
are reliable, but Sacra makes no representation as to their accuracy or completeness. Past performance should not be
taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is
made regarding future performance. Information, opinions and estimates contained in this report reflect a determination
at its original date of publication by Sacra and are subject to change without notice.

Sacra accepts no liability for loss arising from the use of the material presented in this report, except that this exclusion
of liability does not apply to the extent that liability arises under specific statutes or regulations applicable to Sacra. Sacra
may have issued, and may in the future issue, other reports that are inconsistent with, and reach different conclusions
from, the information presented in this report. Those reports reflect different assumptions, views and analytical methods
of the analysts who prepared them and Sacra is under no obligation to ensure that such other reports are brought to the
attention of any recipient of this report.

All rights reserved. All material presented in this report, unless specifically indicated otherwise is under copyright to
Sacra. Sacra reserves any and all intellectual property rights in the report. All trademarks, service marks and logos used
in this report are trademarks or service marks or registered trademarks or service marks of Sacra. Any modification,
copying, displaying, distributing, transmitting, publishing, licensing, creating derivative works from, or selling any report is
strictly prohibited. None of the material, nor its content, nor any copy of it, may be altered in any way, transmitted to,
copied or distributed to any other party, without the prior express written permission of Sacra. Any unauthorized
duplication, redistribution or disclosure of this report will result in prosecution.

WWW.SacCra.com

mailto:jan@sacra.com
https://www.sacra.com/

Published on Feb 15th, 2022

Cole Krumbholz, founder at
Formspree, on the future of full-
stack development

By Jan-Erik Asplund

EXPERT INTERVIEW

Cole
Krumbholz

Founder
Formspree

Background

Cole Krumbholz is the co-founder and head of product at
Formspree. We talked to Cole because Formspree is an API
product at the center of the growing trend towards headless
and the Jamstack.

Interview

What has your experience with Jamstack been like as a
developer, and how have you used Jamstack yourself?

There are two sides of it for me. I've used Jamstack to create
websites. At Formspree, we've used Nextjs for our Vercel
integration, and Hugo for our marketing site.

I've also been building products in this space for a long time. In
2012 | launched something called Backlift, which was a
platform for single-page apps using Backbone.js. Then |
transitioned to building Brace.io, which was a way to deploy

static sites using Dropbox instead of FTP when people still
used FTP to upload code. Brace was acquired by Squarespace
where | worked for a few years on their developer platform,
and left in 2018.

| then focused on Formspree -- which we initially launched
back when | was still working on Brace, in the early days of
Jamstack (before it was called Jamstack). So I've been
building services in this space for a while.

Why do you think Jamstack blew up so much around that
time into now?

There are a lot of factors. I'm not sure that there was one
obvious thing for me that made it blow up. But | do think that
Netlify was a big part of it. They coined the term Jamstack,
promoted it as a concept and proved it out. They spent a lot of
effort to create an ecosystem that could compete with
Wordpress. A big moment for the Jamstack ecosystem was
Netlify scoring Smashing Magazine on their platform and
showing that a big production content site could use this
tooling. So | think a lot of it was them pushing the industry
forward.

A few other enabling factors were static site generators
becoming more popular, especially GitHub's Jekyll generator.
The GitHub ecosystem in general becoming the default way to
create and version code. Around that time Github’s API allowed
Continuous Integration tools to hook into the workflow and run
automations whenever code was pushed. So | think static site
generators, GitHub and Cl were important enabling factors

too.

To give Netlify even more credit, | think that the build hook was
a small but essential innovation that unlocked Jamstack as a
workflow that could compete with Wordpress. Before the build
hook, you needed a developer to compile and deploy website
changes manually. If you had a non-technical content author
that was creating markdown files, getting that person to
commit to a Git repository was a big hurdle.

Having build hooks allowed a third-party API to trigger the
rebuild. That opened the door for headless CMSs to offer a
non-technical interface for writers to produce content. The
CMS could automatically rebuild the website via build hooks

whenever the content changed. That sorta made the whole
thing work.

Could you talk about Netlify in comparison with Vercel and
touch on why Next.js is important to understanding this?

When comparing Vercel to Netlify, my understanding is that
they come from different places. When you look at Netlify,
Mathias -- the co-founder -- came from the agency world. |
think he had been working on a mix of content heavy projects
including some WordPress projects. He launched something
called BitBalloon, which was a way to deploy static websites,
and a precursor to Netlify. He was focused on what | would call
classic website development.

| think the Vercel product and team came more from the
JavaScript community, and were trying to iterate on the
developer experience for full stack JavaScript engineers.
Historically you have two very different problem sets that web
developers were tackling -- the server side and the client side -
- and not really an ability to share code between them. In the
Node.js ecosystem you end up with two different systems
doing similar things. They're both essentially rendering HTML,
whether it's rendering it on the server side or the client side via
something like React. Trying to come up with ways to reuse
that code across the two different environments and simplify
the experience of writing JavaScript applications in general -- |
think that's where Vercel had been innovating for a long time.

| think Next.js took the things people liked about static sites
and also addressed a lot of problems that JavaScript
engineers were facing. For example, rendering on the server
and the client in the same way, incrementally adding
functionality on the client so that you get fast load times. Those
kinds of problems are the core of what Vercel started off trying
to solve.

Are there certain kinds of teams where this Jamstack
approach really makes sense? Does it not make sense for
everyone?

| feel like Next.js is, in a way, the future of full stack
development. When | started working on Next.js websites, |
thought, "Oh, | get it. This is basically just like a full stack
application." It can do everything | expect from a traditional
MVC web framework. And it's packaging that along with the

tooling and build process that you need to create an interactive
front-end application. That to me is an easier workflow than
separately managing the frontend and backend code, which is
what we had to do in the past. It blurs the line, and unifies the
dev experience. So | see Next.js as the evolution of full stack
development.

| think Netlify is trying to solve a different problem. They're
evolving the platform. Especially for content-heavy sites -- the
kinds of stuff that you might have used WordPress for -- | think
that's where the Netlify platform and tooling is helpful.

It's a little hard to compare them because Netlify doesn't have
a horse in the race of web frameworks. They've focused on
improving the infrastructure and deployment experience
regardless of your framework, even if you're using Next.js.
Vercel also has a platform, but | don't know how many people
are deploying non-JavaScript or even non-Next.js applications
to it. | could be wrong, but | feel like if | were to try and build
something using a different static site generator than Next.js, |
probably wouldn't try to deploy it on Vercel. But for Next.js it's
the way to go.

One idea that we’ve been talking about is that where the
value is in the Jamstack ecosystem is less like Vercel and
Netlify, and more all the APIs -- that's what you're really
betting on, a future where there are just so many more
APIls that are getting better constantly. Do you have any
thoughts on that as a theory?

Well, | feel like APIs have been a part of the web development
ecosystem forever. If you want to send text messages or
collect payments from your website you use APls. However,
there are a specific set of APls that grew up around Jamstack
and are there to solve Jamstack problems. For example,
headless CMSs are new. It's not something that people
needed until they stopped packaging a database with their web
server. It’s just a different way of managing content.

Formspree is somewhere in between -- we're an API that
serves the Jamstack community. But we’re also serving a need
that's as old as the web. It used to be that when you built a
website, you’d have a CGl-bin -- a way to run server-side
scripts for things like collecting form submissions -- and every
web host would give you access to that. But today’s hosting
providers often don't support CGl-bin. Plus spam is a bigger

problem, sites must handle more traffic, marketing teams
require more functionality and end users expect it all to just
work. So when developers reach for an easy way to collect
form submissions, it makes sense to use a service like
Formspree instead of building it themselves.

| think we’re part of a trend of developers moving away from
the CGI-bin approach of building their own server-side
functionality, and letting 3rd party APIs handle things.
Jamstack puts those APIs at the center, but | think it goes
beyond Jamstack. Anybody building any web application today
is taking advantage of APIs.

One of the powerful things about Next.js is that it makes
serverless functions first class citizens. That gives you more
flexibility for how to incorporate those APIs. Serverless
functions in general are useful for glue code that connects to
an APl on the backend, sends the appropriate credentials, and
cleans up data before sending it to the frontend. | don't know
for sure, but | would imagine that's the most common use case
for serverless these days -- tying together all those APIs.

Could you talk about trade-offs to working in a Jamstack
development mode? What are some of the key friction
points that still need to be ironed out? One that we were
thinking about is collaboration between engineering and
content teams.

| think the whole idea of headless CMSs and build hooks
allowing non-developers to collaborate was one of the biggest
problems. | guess there may still be friction there in terms of
immediacy. When building a site in Jamstack, you ship some
content, but it still takes time to build and get distributed via
CDN, the content delivery network that's an essential part of
the Jamstack approach. As opposed to just making a change,
saving it in a database, and next time you make a request it
comes out of the database. | think there's perhaps a faster
iteration speed there, and I'm not sure that Jamstack has
100% solved that. So that part of the collaboration may still be
a challenge.

And then there’s just people learning to do things a different
way. That’s always a friction point. At the end of the day, for
somebody that's trying to create content, as long as the words
are on the page, it looks good, and it's achieving SEO goals, it
probably doesn't matter that much which approach is taken. So

learning a different way of doing things, or even just learning a
different CMS, can be a barrier.

Does anything come to mind that might serve as a useful
analogy for what Jamstack represents? We were thinking
of Agile, which was a new way of working where a bunch
of tools emerged to support people working in an Agile
way.

| think in some ways it's part of this larger trend pushing more
functionality forward to the client. It is about technology:
improving load times, improving security and making the end
user's experience faster, better and more interactive. If it
weren't for the constant pressure to innovate in terms of the
user experience on the web, there wouldn't be so much froth in
the JavaScript community and so many people trying to create
new tools and changing practices every couple of months. It's
just part of the constant evolution of the web, which is a very
innovative and dynamic technology.

Disclaimers

This transcript is for information purposes only and does not
constitute advice of any type or trade recommendation and
should not form the basis of any investment decision. Sacra
accepts no liability for the transcript or for any errors,
omissions or inaccuracies in respect of it. The views of the
experts expressed in the transcript are those of the experts
and they are not endorsed by, nor do they represent the
opinion of Sacra. Sacra reserves all copyright, intellectual
property rights in the transcript. Any modification, copying,
displaying, distributing, transmitting, publishing, licensing,
creating derivative works from, or selling any transcript is
strictly prohibited.

