
EXPERT INTERVIEW

Bucky Moore, Partner at Kleiner
Perkins, on Jamstack's big upside
case

UPDATED
03/11/2022

TEAM

Jan-Erik Asplund
Co-Founder
jan@sacra.com

DISCLAIMERS

This report is for information purposes only and is not to be used or considered as an offer or the solicitation of an offer
to sell or to buy or subscribe for securities or other �nancial instruments. Nothing in this report constitutes investment,
legal, accounting or tax advice or a representation that any investment or strategy is suitable or appropriate to your
individual circumstances or otherwise constitutes a personal trade recommendation to you.

This research report has been prepared solely by Sacra and should not be considered a product of any person or entity
that makes such report available, if any.

Information and opinions presented in the sections of the report were obtained or derived from sources Sacra believes
are reliable, but Sacra makes no representation as to their accuracy or completeness. Past performance should not be
taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is
made regarding future performance. Information, opinions and estimates contained in this report re�ect a determination
at its original date of publication by Sacra and are subject to change without notice.

Sacra accepts no liability for loss arising from the use of the material presented in this report, except that this exclusion
of liability does not apply to the extent that liability arises under speci�c statutes or regulations applicable to Sacra. Sacra
may have issued, and may in the future issue, other reports that are inconsistent with, and reach different conclusions
from, the information presented in this report. Those reports re�ect different assumptions, views and analytical methods
of the analysts who prepared them and Sacra is under no obligation to ensure that such other reports are brought to the
attention of any recipient of this report.

All rights reserved. All material presented in this report, unless speci�cally indicated otherwise is under copyright to
Sacra. Sacra reserves any and all intellectual property rights in the report. All trademarks, service marks and logos used
in this report are trademarks or service marks or registered trademarks or service marks of Sacra. Any modi�cation,
copying, displaying, distributing, transmitting, publishing, licensing, creating derivative works from, or selling any report is
strictly prohibited. None of the material, nor its content, nor any copy of it, may be altered in any way, transmitted to,
copied or distributed to any other party, without the prior express written permission of Sacra. Any unauthorized
duplication, redistribution or disclosure of this report will result in prosecution.

www.sacra.com

mailto:jan@sacra.com
https://www.sacra.com/

Published on Mar 11th, 2022

Bucky Moore, Partner at Kleiner

Perkins, on Jamstack's big upside

case

By Jan-Erik Asplund

Background
Bucky Moore is a partner at Kleiner Perkins. We talked to
Bucky because he's a prolific investor in developer-focused
tools, including Netlify and other Jamstack or Jamstack-
adjacent tools, and we wanted to learn more about how he
sees the market evolving and what the upside case looks like
for the Jamstack ecosystem.

Interview
Could you start by painting for us how you think about the
Jamstack space from a high level and what your
investment thesis is?

If you think about the number of web applications and websites
that exist on the internet today, the rate at which those
websites are being evolved or rebuilt and, frankly, the net new
type of web applications and websites that are being built, it's
an enormous pool of activity. So is the amount of

infrastructure, tooling and services that need to be purchased,
adopted and consumed to support that activity is also large,
and the resulting opportunity for startups.
For most companies, web development is synonymous with
software development. The web is the primary medium of
interaction for businesses and their customers. Ultimately the
web has won and will be relevant for a very long time. While
there will always be a place for mobile apps, the web is a very,
very strategic platform for any business owner that has
ambitions to interact with their customers through digital
channels. This makes web infrastructure a very exciting theme
to index against as an investor.

With respect to the Jamstack, what's happening is that there is
this new way of developing these applications that optimizes
for performance, security, simplicity and -- probably most
importantly -- the productivity of the developer and the ability to
build these really cutting edge, engaging experiences. This
new way of doing things is being pulled forward by the
JavaScript community. Web developers want to work in the
latest iterations of JavaScript and frameworks that enable you
to choose between static and dynamic page rendering so that
users have a much faster and more delightful experience with
your products.

Ultimately, many developers would say it's just an objectively
better way of building and delivering web experiences. This is
what is driving the groundswell of commercial opportunity for
companies like Netlify and others in the ecosystem.

Do you have a way that you taxonomize the space and
categorize which companies are important? For instance,
we’ve been thinking about Vercel and Netlify, on the one
hand, and then all the various APIs that become important
in a Jamstack approach, on the other, as two of the really
big categories.

I think there's a way to talk about that today, and there's a way
to talk about what I think it might look like five to ten years from
now, probably closer to five. The way I think about it today is
the companies that you mention are platforms that allow
developers to deploy and host modern web applications. More
specifically, the front-end components of your application, and
how they interact with back-end components like databases
and APIs. Now, technologies like Next.js and Remix, "some

pages should be statically rendered, and we'll give you the
infrastructure to build, deploy and serve those static assets to
your end users, but there are also going to be some things
you're going to want to remder dynamically. And for those
dynamic things, we think it's an objectively better solution to
arm the developer tasked with designing the frontend to decide
which part of that web experience renders dynamically versus
statically." Next.js is known for introducing this kind of server-
side rendering to the equation.

By way of the possibilities that that unlocks for the citizen front-
end developer who isn't used to being able to do server-side
rendering type things without having to go and spin up a bunch
of infrastructure and be proficient in backend technologies,
Next.js is this unbelievably unique experience for them. They
can actually do that all in the same framework that they're
building their frontend in. That's why I think Next.js really broke
out -- it just unlocked a new set of possibilities for front-end
developers that didn't exist before, and in a way that didn’t
force them to take on all kinds of new complexity and learn
new things.

When I made the comment about today versus five years from
now, today you would say those platforms are the hosting
infrastructure for the frontend of your application, where
anything backend would land on something like AWS or a
third-party service like Twilio or Algolia. But I think they are
ultimately the clouds of the future. These are end-user-focused
cloud computing platforms that treat the serverless, edge-first
way of doing things as a first-class citizen, but are increasingly
bringing full-stack possibilities to bear to the front-end
developer.

What these platforms have succeeded at is giving front-end
developers superpowers. They make it really easy for front-end
developers to work fast and to get their stuff on the internet,
without having to think about hosting and configuration and all
the other stuff that they used to dread having to worry about
and generally stay away from. Before Netlify existed, the only
way you could do those things was to go to the AWS console,
which is a very overwhelming experience for a developer who's
used to working in React on their local environment and
occasionally going into GitHub and checking code. I think of
these products as the hosting platforms of this new era of
serverless computing.

I think it starts at the front-end developer because the front-
end developer is arguably going to be the largest population of
engineers as time goes on, because more and more of the
backend stuff is being automated by managed services. The
stuff that people used to build and used to be paid to operate
as DevOps people or SREs -- that surface area of concern, is
asymptotically going to approach zero at some point. There will
always be software vendors that have some point of view on
how a part of their backend needs to be more custom, and
they're going to go and take it on themselves. But even at that
level, the ladders of abstraction just continue to climb upward.
So I think the Jamstack movement speaks to empowering the
front-end developer as the guiding light, and that's the right
side of history to be on.

One thing we’ve heard is that Vercel and Netlify today look
like they're reselling a bundle of AWS services, while AWS
-- and maybe Azure to an extent -- are attempting to go
after the same market with products like Amplify. I’m
curious if part of your thesis is that it’s going to be hard
for AWS to put together a similar end user experience that
Netlify or Vercel has because they’re an infrastructure
company?

Suffice it to say that history has shown us that AWS does not
necessarily excel at building world-class user experiences. The
reason they don't excel at that is because that's not the DNA of
the company that they've built. It's not what people are
incentivized to be great at, and frankly, it's not clear that it's a
strategic priority for them to excel at that. What they want to
excel at is providing underlying primitives that are the
cheapest, most performant, most reliable and most scalable
primitives that you can get from anywhere. That's what they
focus on, that's what they do.

They build those primitives for the mass market. The
implication of building primitives for the mass market is there
will always be niches of developers that may appear niche
today to a business of that size but that are actually quite
interesting to a startup and will probably get larger over time,
such that they become things that you would probably be
stretched to call "niches." There's arbitrage there, which is to
go and build things that help them do their work better and that
AWS isn't going to go and touch..

In the case of Netlify, I think one thing you could say is, "Wow,
they're really just building a layer on top of what would
otherwise be services you could glue together in AWS." That is
in fact true, but it's not about those different services. What it's
about is the workflow on top of those services that makes
everything really easy and low cognitive load to operate. AWS
requires you to make all these decisions about how you
configure, provision and set things. I think the future is a world
of more end user-focused infrastructure, where you think about
just an individual developer trying to get their work done and
not having a desire to express preferences on those things.
They expect the vendor to make those choices for them and
just make it work.

That's where you get back to this serverless way of doing
things. I think the term "serverless" is a bit loaded. On one
hand, it means presenting a solution that precludes the
developer from having to think about infrastructure whatsoever,
so no clusters, no provisioning, no configuration, etc. On the
other hand, serverless refers to pay-as-you-go billing, which is
"I'm only paying for something I'm using, so I'm not paying for
the cost of the long running server."

Netlify actually delivers on both of those objectives, as do
other players in the space. I think it's enabled by the fact that
everyone is really focused on delivering a workflow rather than
the infrastructure. The workflow sits above the infrastructure
and is basically there so that you don't have to think about it.

When we think about products that abstract away a lot of
the backend and other things that developers -- especially
front-end ones -- don't necessarily want to deal with, one
product that comes to mind is Heroku. Does looking at
Vercel and Netlify as a Heroku for the modern generation
resonate with you? Are there lessons to be taken away
from Heroku’s successes and failures?

So my approximate understanding of both the success and
failure of Heroku was that they were capable of making it really
easy and convenient to get started with. But as your
application became bigger and more important and required
more specificity to it, forcing you to consume the database
from it was limiting, and it drove people away. By focusing on
the needs of the front-end developer and then extending to
best-of-breed providers of back-end services like databases

and 3rd party APIs, you give the developer more flexibility, and
can scale with them in more cases.
When Heroku was getting started, there was not this
acceptance and proliferation of third-party cloud-native
database services like PlanetScale and Cockroach. I think
these are the future of what big customer-facing experiences
are going to be anchored by. I can't speak for every company
in this space, but my sense is that the Jamstack ecosystem
envisions being a partner to those companies and pulling them
into the ecosystem.

Disclaimers
This transcript is for information purposes only and does not
constitute advice of any type or trade recommendation and
should not form the basis of any investment decision. Sacra
accepts no liability for the transcript or for any errors,
omissions or inaccuracies in respect of it. The views of the
experts expressed in the transcript are those of the experts
and they are not endorsed by, nor do they represent the
opinion of Sacra. Sacra reserves all copyright, intellectual
property rights in the transcript. Any modification, copying,
displaying, distributing, transmitting, publishing, licensing,
creating derivative works from, or selling any transcript is
strictly prohibited.

