P

SACRA

EXPERT INTERVIEW UPDATED
06/08/2025

Ayan Barua, CEO of Ampersand,
on 1nfra for Al agent integrations

TEAM

Jan-Erik Asplund
Co-Founder
jan@sacra.com

DISCLAIMERS

This report is for information purposes only and is not to be used or considered as an offer or the solicitation of an offer
to sell or to buy or subscribe for securities or other financial instruments. Nothing in this report constitutes investment,
legal, accounting or tax advice or a representation that any investment or strategy is suitable or appropriate to your
individual circumstances or otherwise constitutes a personal trade recommendation to you.

This research report has been prepared solely by Sacra and should not be considered a product of any person or entity
that makes such report available, if any.

Information and opinions presented in the sections of the report were obtained or derived from sources Sacra believes
are reliable, but Sacra makes no representation as to their accuracy or completeness. Past performance should not be
taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is
made regarding future performance. Information, opinions and estimates contained in this report reflect a determination
at its original date of publication by Sacra and are subject to change without notice.

Sacra accepts no liability for loss arising from the use of the material presented in this report, except that this exclusion
of liability does not apply to the extent that liability arises under specific statutes or regulations applicable to Sacra.
Sacra may have issued, and may in the future issue, other reports that are inconsistent with, and reach different
conclusions from, the information presented in this report. Those reports reflect different assumptions, views and
analytical methods of the analysts who prepared them and Sacra is under no obligation to ensure that such other reports
are brought to the attention of any recipient of this report.

All rights reserved. All material presented in this report, unless specifically indicated otherwise is under copyright to
Sacra. Sacra reserves any and all intellectual property rights in the report. All trademarks, service marks and logos used
in this report are trademarks or service marks or registered trademarks or service marks of Sacra. Any modification,
copying, displaying, distributing, transmitting, publishing, licensing, creating derivative works from, or selling any report is
strictly prohibited. None of the material, nor its content, nor any copy of it, may be altered in any way, transmitted to,
copied or distributed to any other party, without the prior express written permission of Sacra. Any unauthorized
duplication, redistribution or disclosure of this report will result in prosecution.

WWW.SacCra.com

mailto:jan@sacra.com
https://www.sacra.com/

Published on Jun 08th, 2025

Ayan Barua, CEO of Ampersand,
on infra for Al agent integrations

By Jan-Erik Asplund

«
, MCPis HTTP

AMPERSAND)

Background

Last October, we interviewed Ayan Barua,_co-founder & CEO
of Ampersand ($4.7M seed, Matrix) about the history of iPaaS
and the rising trend of native product integrations.

We reached back out to Ayan to talk about how MCP and
agents are changing how SaaS companies think about
integrations.

Key points from our conversation:

SaasS in its current dashboard—and workflow-centric form
—built on the 2010s UX pattern of buttons, views, and
user-driven actions—is being eclipsed by Al agents, with
buyers of software increasingly expecting ChatGPT-style
systems that can integrate & reason over their data across
all their tools via existing APls, synthesize it, and drive
outcomes. “You cannot throw a DIY SaaS—which is basically
a combination of dashboard, workflows, and integrations,
where they have to figure everything out themselves or hire
consultants to make sense of it—at a B2B buyer. Buyers don't

https://sacra.com/research/ayan-barua-ampersand-native-product-integration-infrastructure/
https://sacra.com/research/ayan-barua-ampersand-native-product-integration-infrastructure/

want to learn your software. They just want to get the job done.
Business software is all about getting the job done. Al Agents
and agentic workflows—systems that can reason for you and
help you more than the original SaaS premise—are what
people are demanding more and more."

While unified APIs promised fast integration for human
engineers between your SaaS app and entire categories of
tools like sales & CRM (Salesforce/HubSpot), HRIS
(Workday), and ERP (NetSuite) by flattening 3rd-party
systems into the most common fields via a single
integration point, Al agents threaten to render this
abstraction unnecessary, as they can go deep—parsing
arbitrary data structures, mapping to tenant-specific
fields, and covering all edge cases—by default. "When a
bunch of these unified APIs started, their take was, Don't do
complex things. Shove complexity out. Here is a simple model,
map to it, and you can get started.... In an Al-native world, the
concept of unified APls makes no sense because by definition,
| am able to understand a customer tenant 10x better than two
years back. Deep is the new shallow because Al is much
better."

As Ampersand, Finch, Merge, and others all move to
launch MCP servers and agent-facing SDKs betting MCP
will become the HTTP of agentic SaaS, they’re aligning
around a shared protocol that gives Al agents access to
3rd-party systems via declarative “tools” for reading and
writing data layered over existing APIs—enabling agents
to retrieve the live customer context they need to reduce
hallucinations and take the best actions. "APIs are built for
developers to programmatically take actions on systems. I'm a
developer building a CRM integration, coding my thing,
working on the API... MCP is a protocol designed around the
agent talking to a system. It's a foundational shift that puts the
LLM and the agent at the center, not the developer.”

Interview

Last time we talked in October 2024, you mentioned Al
agents, but we did not go into it deeply. What has changed
in SaaS since we last spoke, both from a SaaS developer
perspective and from an end customer perspective around
demand for Al and agentic solutions?

| actually have only one answer to this. Every new B2B SaaS
will start out as an Al agent and/or an agentic application. In
2025, if you look at legitimate companies with good
entrepreneurs coming out of their previous successful exits,
they're all starting new agent companies.

SaasS in its current form is likely dead. The reason is that
buyers of B2B SaaS are demanding more from their vendors
(and a lot of that is stemming from how consumers use
ChatGPT). You cannot throw a DIY SaaS, which is basically a
combination of dashboard, workflows, and integrations, where
they have to figure everything out themselves or hire
consultants to make sense of it, at a B2B buyer. Buyers don't
want to learn your software. They just want to get the job done.
Business software is all about getting the job done.

Al Agents and agentic workflows—systems that can reason for
you and help you more than the original SaaS premise—are
what people are demanding more and more. That shift has
accelerated. The last time we chatted, these were just popping
up here and there. That's how companies are starting now. And
it's been only six months.

In terms of agent B2B SaaS, we’re seeing (1) agent-first
workflows like Sierra built on top of existing systems of
record like Zendesk and Salesforce, (2) BPOs like Decagon
meant to replace outsourced support teams and (3) agent
Uls built on top of existing tools like Intercom has done.
What’s your view on the categories of agentic B2B SaaS,
where do you see the demand and how do you see these
categories converging or diverging over time?

These are the same outcome overall—customers and users of
B2B SaaS want to do less grunt work. They want to get to
outcomes—faster, better, cheaper. (1), (2), and (3) are all
different methods to achieve that. There may be additional
methods, and these methods will depend on the type of
outcome and the type of buyer or user driving that outcome.

If the method is to do customer support for B2C companies like
Sonos, and Sierra is quite B2B2C—then you'll see
autonomous CS agents (from Sierra) talking directly with the
B2C customer (of Sonos). They will likely delegate to a human
after a point. If it's a higher value contract where you're almost
replacing the BPO, then it could be more high-touch. Humans

aren't going away—they're helping accelerate the outcome
much quicker. In high-value use cases, we'll have agents and
people working together.

Fin is also interesting because it's Intercom's newest iteration.
It shows how even older generation of SaaS is being
repositioned as agents. It's very convergent. Whether you look
at Sierra, Decagon—new companies with new stacks—or
Intercom, which has been around for ten years, it's all
convergent.

The convergence is around the fact that SaaS had a lot of
investment going into humans using it and building muscle
memory of how to use it. Go into this dashboard, click on this
thing, scroll down, do this thing. There's a lot of "app mode" UX
that has been built out over ten to twelve years. But that mode
may not be the most efficient mode because buyers want a
voice prompt interface. They want to chat with it the way they
chat with 03. The UX that we build out for the next twenty
years may not be as relevant as app mode. Directionally, it's all
going there.

Talk to us about what Al agents can do with unstructured
data that couldn’t exist before—for instance, what an Al
support agent can do if the support SaaS has an
integration with call data from Gong that wouldn’t have
been possible before.

| actually wrote a post about this. We did a partnership with
Gong recently, about a month back. We're natively able to
bring a lot of Gong data into these platforms and also push it
back into Gong if needed.

What Gong gives you is the unstructured intangibles in
addition to the structured tangibles. CRM is a relational
database at its core. There are some semi-structured fields
and attachments, transcripts, but CRM is largely a relational
database that you can extend with custom fields and custom
objects per tenant configuration.

Gong, on the other hand, gives you more intangibles. You can
almost pick up that there was a twitch in the eye of the
prospect, and you know you lost the deal at that moment.
That's not going to make it into CRM the way it's currently set

up.

If you zoom out, there are essentially three types of data:
structured data, semi-structured data, and unstructured data.
The customer of a software vendor has all three of those
datasets across three different environments. Some is in CRM,
some is in Gong, some is in Fathom, some is in Google Docs
or Notion. That context is distributed across multiple systems,
sometimes by design, because one system, like Google Docs,
can do what CRM cannot—Ilike live editing and collaboration.

Someone like Gong is now owning large parts of the go-to-
market stack because they're exceedingly good at handling
unstructured data. They're also building agents—revenue
agents. It's the same convergence of old SaaS and new SaaS
—what | just described with Intercom.

Tell us about the problem of legacy API ‘pipes’ and
infrastructure in building agentic experiences.

APls are built for developers to take actions on systems
programmatically. I'm a developer building a CRM integration,
coding my thing, working on the API. But LLMs are not
developers. Agents are essentially not developers. They're
essentially a biological computer with some human-like
reasoning characteristics, but they're not humans.

MCP is an attempt at an Al-native protocol and many protocols
have impacted how we function as a society, such as HTTPS,
TCP, gRPC, GraphQL, etc.. All the rest of the protocols are
essentially developer-centric so that developers can build
systems that talk to systems. MCP is a protocol designed
around the agent talking to a system. It's a foundational shift
that puts the LLM and the agent at the center, not the
developer.

The good part here is that it opens up a bunch of new use
cases where nontechnical people who are somewhat technical
but aren't in the code can also voice prompt these systems
very sKillfully. We're going from a programmatic API-driven
world to a more nondeterministic agent and voice prompting-
driven world. MCP is a good protocol for that.

Assuming the community momentum that MCP has, it can

really make it the de facto standard—though you never know if
others could block the protocol—the reason this got so popular
is because it puts the agent workflow at the center and doesn't

try to reverse engineer from the standpoint of the API. That's a
foundational shift.

| wrote an article recently about what MCP does and what
MCP doesn't do. If your CEO tells their developer to “go use
MCP to solve all their problems?”, it's like telling the developer
“go use HTTP and it'll solve all your problems”. That makes no
sense. Like any other protocol, MCP requires a ton of
orchestration, and there are certain aspects that MCP excels
in. That's where the community momentum is.

MCP promises to be a USB-C port for Al-agent context.
Does MCP become the default way to get LLMs the context
that they need? What are the strengths and limitations of
MCP?

At the core of MCP, is the first serious attempt at establishing
some kind of common language that Al agents learn to speak
in. Think of it as providing a common walkie-talkie channel,
allowing them to request context, perform actions, and stream
results without needing to invent a new dialect each time.

An agent calls separate tools—in the B2B context, it's SaaS
provider data, whether they're internal or external APIs,
databases, file systems—just by talking through MCP. It's not
talking 20 different dialects to 100 different systems. It’s just
speaking a gateway language.

Then there are orchestration platforms like Ampersand that
operate on top of the MCP protocol and provide Al agents with
capabilities that MCP deliberately avoids. Things like API
authentication and token refreshes, object and field mapping,
privacy, security, governance, rate limiting, retry logic, error
handling, etc. There's a bunch of difficult infra work you still
need to do for your agent.

For agents, is latency a bigger problem or having the right
context, a combination of the two?

There are multiple classes of problems for agents. It's a
gateway to different systems—it's a protocol. MCP is not your
Al agent brain. How do you feed your agent brain real-time
data context? That's the big question here.

How do you orchestrate in and around MCP securely? How do
you do it in a way where there's no tenancy problem? If the

agent is an agentic application that must deal with a hundred
different Salesforce tenants across a hundred different
customers, it cannot simply grab data from one tenant and mix
it with data from another tenant. That would be a privacy and
security nightmare for the agentic app builder.

Tenancy management is one of them. MCP is not your security
department. MCP is not an ETL. MCP doesn't take care of data
lineage. MCP is more synchronous than async, yet. MCP is not
your bidirectional sync engine. MCP is neither cost-aware nor
rate limit-aware. MCP is also not a universal data model—you
still have to think about your own schema. MCP doesn't have
an error handling framework, the way you would want to build
a robust error handling framework. MCP lacks a robust
consent and governance layer.

I'm not complaining here. These are all things MCP shouldn't
be doing. This is like HTTPS needing OAuth. There are other
tools that will complement MCP.

MCP doesn't have native observability. MCP doesn't have
versions or compatibility. There are multiple such challenges
that others will build solutions for. | can't even say that's a hole
—these are things that the protocol shouldn't be responsible
for. Others should be adding and complementing MCP with
their tools.

MCP needs dev, test, and sandbox environments. When you're
taking autonomous actions, you need to understand how risk is
propagated across systems. MCP shouldn't do that. Other
developers and systems will take care of problems like these.

What are the incentives for Zendesk or Salesforce to build
better APl infrastructure for integrations if it enables them
to extract an agentic tax in the form of a higher volume of
API calls (e.g., polling) and enable them to compete better
with their own vertically integrated agent Ul on their SaaS?

| would argue that they are already investing a lot in their APIs.
People often discuss the limitations of Salesforce APls, but
Salesforce is a complex product with a vast surface area, and
its APls reflect that complexity. Developers building with
Salesforce CRM APIs for the first time get lost often. If you
land on a huge continent and don't know where the map is,
you're going to struggle.

For companies like Salesforce, HubSpot, and Zendesk, which
invest in their APIs, it is evident that newer Agent companies
are generating or writing back numerous insights into these
Systems of Record. This lets new use cases to open up.
Sierra, on top of Salesforce, would likely increase the amount
of data that is being sent to Salesforce. So now Salesforce
becomes a stickier Systems of Record database because of
Agents

There are reasons for incumbents to actually want more API
usage. The data is getting back into the their Systems of
Record.

| think that the B2B saas future will be a little more vertical.
There are untapped places and opportunities where you can
almost leapfrog ten years of construction equipment movement
and SaaS around that. ServiceTitan broke out in the last five to
six years because it was so vertical.

A lot of these platforms will want to build agents themselves for
very horizontal use cases. Then there are agents that others
will build in and around these systems, not necessarily just one
system. They're probably focused on multiple systems of
record. Get data from a communication platform like Gmail or
Exchange, marry it with another communication platform like
Slack, then marry it with Gong, and use it to orchestrate in and
around ServiceTitan.

Those types of vertical agents, the horizontal platforms will not
build. The market may fragment with Zendesk building five
agents that are core to the utilization of Zendesk itself, and
then the rest of the agents are basically these other
marketplace agents—other SaaS companies that are customer
support adjacent, but not really. They're either verticalized or
maybe a little outside the realms of what Zendesk or
Salesforce might do.

That's how | think about it—it's the next iteration of business
software. Systems of record and systems of intelligence aren't
going away. All of them are getting 10x smarter.

Slack recently announced that they're locking down their
API or making their APl more expensive to use, similar to
what Twitter did a while ago. It seems likely that there
might be more companies that will do this—hoard the data

and make it really expensive so that you favor using their
solution. Can you play out why that's a bad strategy and
break that down a little bit?

When the Internet first came in, my parents were like, "Don't
go on the Internet, man. Don't do this. There's some bad stuff
that's going to happen.” This is the 1994 moment of Internet for
Al.

Build more open ecosystems, and they will get enriched along
the process. Some people will close it down further, but the
data at the end of the day—if I'm GE and I'm spending $10
million on Salesforce—it's not Salesforce data. It's my data.
This call is being recorded in Fathom. Who does this call
belong to? You, me, or Fathom?

The customer will win at the end of the day because they're
paying a gazillion dollars to get to a set of outcomes. The
systems of record like Salesforce, HubSpot, Microsoft, SAP,
and Oracle have a lot of trust built up with customers, and
that's their moat. But customers want to move better.
Customers want to move faster. Customers want more value
creation with less money.

If I'm able to ship 10 times faster because of Cursor—and
that's already established, it's not some random wish
somebody had—then at the end of the day, in business
software, customers have the last say. Wherever customers
want to operate and wherever they want to take the data, they
will take the data.

In this moment, you can either play defensive or you can play
offensive. Offensive is essentially: you want more API| access?
I'll give you even more API access. I'll make you so sticky that
you continue to trust that I'm going to be an amazing steward
of data.

When you're talking to developers who are building stuff
with agents, what are some of the specific problems you

see them coming to you with and what role is Ampersand
serving for folks right now?

A lot of our customers are Al companies—Al-first companies
starting in the last few years. The reason they come to us is

similar to what | mentioned earlier. They believe that for their
agent to function really well, they need all the enterprise

context from their customers, which roughly translates into
deep CRM or go-to-market stack integration and deep ERP
integration.

They believe they don't want to invest twelve to twenty-four
months building it themselves. They want to trust or use things
like Ampersand to have the flexibility and configurability that
they would have if they built it natively, but without having to
build it natively. They're leapfrogging six to twelve months of
their dev lifecycle, and they're not having to maintain it at all.

Our pitch to them is: ship amazing Al, not integration plumbing.
What you do with the ingredients will define whether you're
Michelin star, but we will get you the right ingredients. You
want the best tuna on the West Coast, we'll get you that. But
how you roll the sushi is your secret sauce.

In a world where things are moving extremely rapidly and
velocity is key, we are basically an engine for that velocity to
stay with them without them having to get burned by
integration plumbing.

We talked a lot about the strength of native integrations
versus universal APIs or middleware last time. Is that an
even bigger issue with agents? And in what use cases
does it become more important to have native
integrations?

Humans are generally not looking forward to doing object and
field mapping. Let's say I'm a Revenue Ops person bringing in
this new Sales tool because it's a very good tool, and | want to
roll it out in my company. I'm not really looking forward to
having mutliple two-hour calls with the solutions engineer
where they're like, "Can you tell me about
pipeline_stage\ c?" And I'm like, "Dude, it's pipeline stage.
It's a custom object." And then the person is like, "Cazn you
also talk about opportunities\ stage\ c?" I'm like, "I just told
you, man. It's also a custom object for the opportunity stage."

The object and field mapping that a native integration gives
you is table stakes, but it's still extremely painful for people to
go and map those things. This is at the heart of a native
integration. | have a customer, and they've set up Salesforce,
Workday, and NetSuite in a certain way. They have a complex
schema. | need to understand their tenant's data model and
then map it to my schema. I'm doing that for a thousand

customers, or hundred of customers, or whatever number of
customers | have.

Ampersand's exercise was to basically make that one-to-many
mapping extremely easy because if you deconstruct what a
native integration is, that's what it does well. The native
integration is able to go to attributes and fields and custom
objects unboundedly.

The second order problem is that once you give that
optionality, people still have to drag their feet to go and map
those things. Al can actually do a fantastic job of this.

In an Al-native world, the concept of unified APls makes no
sense because by definition, | am able to understand a
customer tenant 10x better than two years back. When a
bunch of these unified APls started, their take was, "Don't do
complex things. Shove complexity out. Here is a simple model,
map to it, and you can get started.”

Now, if you look at the unified model, it is MCP in many ways.
If you take MCP and add some vertical focus on MCP, that's
going to be our Al SDK. We're saying, okay, you take MCP.
Here is Ampersand Al SDK. You take messaging buses, put
them together, and that's for all your go-to-market stack
integrations—native and deep.

Most companies will go to a point where integration providers
have to understand that everybody will have native integrations
because native integrations are much easier to do. If | can do a
native integration in two days instead of two years, | would
want that. The directional compass of data exchange between
buyers of software and sellers of software will be deep by
definition.

Deep is the new shallow because Al is much better. If you chat
with 03, it knows you better than many people you've known
for twenty years.

A big driver for integration middleware has been the
explosion in the long tail of SaaS. Do agents result in a
rebundling cycle where most of the long tail of SaaS with
minor differences in Ul, data structures and pricing
effectively die off?

You have to understand why SaaS became fragmented in the
first place. Look at my background—I was VPE at G2. Before
that, | started Siftry. Before that, | started Credii. These were
all trying to bring sanity to the SaaS fragmentation problem,
whether it's discovery or spend management or compliance
around it. Along the way, | realized there's no infrastructure
that is stitching SaaS together in a fundamental way. So
Ampersand is one attempt to solve fragmentation at the
infrastructure layer.

The reason why SaaS got so fragmented and why there are so
many tools is because it's catering to different workflows in the
enterprise. It's catering to different people with different needs
in the enterprise. The reason why there are so many call
recorders is because every one of them has created new
nuances of the call recording software stack.

SaaS will continue to be fragmented because SaaS gets
verticalized pretty quickly. It has its own niche, and then it'll
continue to fragment. An agent is basically agent-first SaaS
now in many ways. You'll see more people building these
agents. | don't think suddenly the SaaS market will shrink to
2,000 legitimate SaaS companies instead of 200,000. That
won't happen.

But what will happen is that human beings will consume less
SaaS through traditional UX. | don't want to go to my twenty-
fifth dashboard and do a bunch of things there. It's too much
cognitive overload. | want to have discussions like this, not
spend time on my twenty-fifth dashboard.

The workflows and the databases will remain. The UX layer
could be something more agentic, where dashboards are
essentially exposed as insights through MCP servers, and
there are agents orchestrating. ChaGPT and HubSpot native
integration is a good example.

| don't want to go to my accounting software. | need it really
badly because otherwise the system is a mess, but I'm not
super excited to go and look at transaction level details. You
may have a transaction agent that is categorizing all types of
transactions on the ledger. What | want as a business is good
clarity on how systems are functioning, how different sides of
my business are functioning, revenue recognition—how are we
doing revenue recognition?

There might be a revenue recognition agent that gives me a
good overview, maybe in simple dashboards, or maybe in
voice, and maybe in email. A lot of the SaaS UX—you may end
up investing way less in building a beautiful UX that nobody
will use because folks are busy voice prompting, not clicking.

If agent SaaS increasingly prices based on outcomes, how
does that flow downstream and affect how an
infrastructure product like Ampersand prices?

Ampersand is not the first integration company, so we carefully
studied the pricing models of all previous generation
integration companies: task-based, user-based, connector-
based, connection-based, etc. Eventually, we felt that there is
a network, storage, and compute cost of data movement. To
run and operate this multitenant data movement platform, we
have our costs. We're trying to align our pricing model with that
infrastructure consumption. That's how we think of ourselves—
as a middleware infrastructure company.

The consumption model is also hitting the application layer
strongly. The application layer was previously seat-based. |
have a seat at the table for using this software. Whether | use
it or not doesn't matter. | will have to pay just for that seat.

In many cases, that still makes sense. In many cases, you will
see that model being extended to seats—maybe human seats,
plus agent seats, plus agent actions. Salesforce is trying
different things with Agentforce pricing. They're at least
attempting different things and seeing what sticks, what
doesn't, because nobody really knows what the SaaS future is
going to look like.

Seat-based gives you a lot of predictability. So people like it.
I'm $10 per month per user. Makes sense. It's easier—no
cognitive overload. Al has actions. If | charge $2 per action and
then offer premium actions at $5 per action, that becomes
complex.

Right now, the shift is going to be a little gradual because the
world operated on a simple pricing metric like user seat-based
pricing for ten to fifteen years, maybe twenty years. Now it's
like, okay, what does consumption mean in this world? There
will be many attempts at getting different pricing models going,
but at the end of the day, companies value ROl more than the

expense. If I'm putting in $100k and | can make $300k back
shortly, that’s a tangible output and outcome...

The application layer has to figure out a lot more about how to
actually do outcome-based pricing. It's a very complex
question, Jan. | don't have the best answer for how you arrive
at a metric that is universally adopted. But SaaS seat-based
pricing is no longer the de facto go-to anymore, which is a big
change in itself. It's an ongoing conversation.

With Ampersand, you set out to solve a recurring problem
for developers and a pain that you personally experienced.
With LLMs and agents increasingly choosing the
infrastructure tooling and writing the code, how does that
affect your personal view of and investment in the
problem? Is infrastructure a place where developer “taste”
is more important than ever, where developers need to
spend more time, or does Al buying and coding threaten to
commoditize tools like Ampersand?

If you deconstruct developer taste, what that means essentially
is reducing barriers to adoption. Developers are context
switching all the time. There are many things they're doing
every day. If they're already doing 14 things, and | put in the
15th thing on their plate, and if the 15th thing has a poor
introductory curve, then developers are like, "This thing is not
good. This isn’t good software."

The developer taste you're talking about is basically
ergonomics and abstractions that make a complex problem
easy to solve. That doesn't go away. A lot of the Agent taste
will be a direct reflection of how developers orchestrate those
agents because the agents are still going to be focused on a
certain set of tasks. The tasks will be defined by the people
who use those agents.

In our case, whether you're vibe coding or building a more
serious application, those use cases are convergent. You still
need to get data from your customer's environment. So
Ampersand's mission hasn't changed. Ampersand's mission is
to enable product builders and developers to really build
connected business software experiences.

The mission is even more interesting because now we have
two consumers. The first one is the developer. The second one

is the agent of the developer. The agent of the developer is
working in tandem with the developer's goals.

The reason we were pretty quick to adopt MCP—the first thing
we did was launch an MCP server for our docs. So you could
say, "Hey, | want to subscribe to HubSpot contact changes of
all my customers. Can you build an Ampersand YAML for
that?" Developers can now code their way into a complex
integration super-fast. They are in Cursor. They have our MCP
server, and they're basically saying, "l need this. | need that"
And the outcome is a very good integration manifest, that is on
top of the MCP server that we built for our docs.

We are now launching a proper MCP server plus an Al SDK so
that agents can directly use Ampersand to call tools. Basically,
Al agents can perform CRUD-like operations on connected
SaaS tools through Ampersand. This is a common set of verbs
that developers use to spin up Ampersand orchestration across
multiple systems.

To answer your question, Ampersand will be developer-facing
and developer agent-facing, but with the common goal that
you're building connected experiences with your customers.

Snowflake and data warehouses are obvious winners from
the trend of Al agents. Second, there appear to be winners
emerging on the customer-facing side like Sierra that are
potential Salesforce disruptors. How do you see value
aggregating at the data / integration middleware layer and
why will Ampersand be a big company and major enabler
of agentic SaaS over the next 5 years?

Storage—Ilet's talk about Snowflake and Databricks. Storage
without fresh bi-directional context is more of a cold archive. Al
agents do much better than the previous generation of
software one of thing: velocity. They can produce a reasonable
set of actions at a much faster pace.

If you do deep research, for example, with a deep research
agent, the amount of research that it can do—a McKinsey
consultant would probably take three months whose only job is
to just research. Al is producing value 10x, 100x, 1000x faster.
Which means that agents need a lot more fresh data. **Agents
need real-time context**. If something changes in customer
systems or other environments, they need that change to

propagate to them much quicker. If they don't have these
reliable sets of changes, they could hallucinate more.

The middle layer guarantees real-time reads and writes. It
guarantees real-time change data capture. The data exchange
part becomes even more important because the storage layer,
currently modelled around batch ETL and nightly jobs, reports
showing up the next day is too slow. Agents will not wait for
twelve hours or twenty-four hours. In some cases, they want to
ship things right now.

The network, storage, compute, and the middleware layer will
evolve into more of a real-time messaging infrastructure
between complex autonomous systems. Every part of the B2B
SaaS stack is up for grabs, by the way. When you say
Snowflake and Databricks—great companies—but if this is the
1994 moment of Al, then all parts of the stack are up for grabs.
You may see middleware companies actually become the
storage layer as well.

| actually don't know how it's going to play out, but all parts of
the enterprise stack are fair game right now. And every CEO,
incumbent or new, knows it.

Disclaimers

This transcript is for information purposes only and does not
constitute advice of any type or trade recommendation and
should not form the basis of any investment decision. Sacra
accepts no liability for the transcript or for any errors,
omissions or inaccuracies in respect of it. The views of the
experts expressed in the transcript are those of the experts
and they are not endorsed by, nor do they represent the
opinion of Sacra. Sacra reserves all copyright, intellectual
property rights in the transcript. Any modification, copying,
displaying, distributing, transmitting, publishing, licensing,
creating derivative works from, or selling any transcript is
strictly prohibited.

