
EXPERT INTERVIEW

Abhishek Nayak, CEO of
Appsmith, on building an open
source internal tool builder

UPDATED
02/08/2023

TEAM

Jan-Erik Asplund
Co-Founder
jan@sacra.com

DISCLAIMERS

This report is for information purposes only and is not to be used or considered as an offer or the solicitation of an offer
to sell or to buy or subscribe for securities or other �nancial instruments. Nothing in this report constitutes investment,
legal, accounting or tax advice or a representation that any investment or strategy is suitable or appropriate to your
individual circumstances or otherwise constitutes a personal trade recommendation to you.

This research report has been prepared solely by Sacra and should not be considered a product of any person or entity
that makes such report available, if any.

Information and opinions presented in the sections of the report were obtained or derived from sources Sacra believes
are reliable, but Sacra makes no representation as to their accuracy or completeness. Past performance should not be
taken as an indication or guarantee of future performance, and no representation or warranty, express or implied, is
made regarding future performance. Information, opinions and estimates contained in this report re�ect a determination
at its original date of publication by Sacra and are subject to change without notice.

Sacra accepts no liability for loss arising from the use of the material presented in this report, except that this exclusion
of liability does not apply to the extent that liability arises under speci�c statutes or regulations applicable to Sacra. Sacra
may have issued, and may in the future issue, other reports that are inconsistent with, and reach different conclusions
from, the information presented in this report. Those reports re�ect different assumptions, views and analytical methods
of the analysts who prepared them and Sacra is under no obligation to ensure that such other reports are brought to the
attention of any recipient of this report.

All rights reserved. All material presented in this report, unless speci�cally indicated otherwise is under copyright to
Sacra. Sacra reserves any and all intellectual property rights in the report. All trademarks, service marks and logos used
in this report are trademarks or service marks or registered trademarks or service marks of Sacra. Any modi�cation,
copying, displaying, distributing, transmitting, publishing, licensing, creating derivative works from, or selling any report is
strictly prohibited. None of the material, nor its content, nor any copy of it, may be altered in any way, transmitted to,
copied or distributed to any other party, without the prior express written permission of Sacra. Any unauthorized
duplication, redistribution or disclosure of this report will result in prosecution.

www.sacra.com

mailto:jan@sacra.com
https://www.sacra.com/


Published on Feb 08th, 2023

Abhishek Nayak, CEO of Appsmith,

on building an open source internal

tool builder

By Rohit Kaul

Background
Abhishek Nayak is the CEO and co-founder of Appsmith. We
talked to Abhishek to learn more about the competitive
landscape of internal tool builder companies and why Appsmith
chose to differentiate with an open source approach.

Interview
Tell us about what inspired you to start Appsmith. What 
was your thesis behind it?

I'm part of Appsmith’s founding team of three. Appsmith was
originally started by my co-founder and CTO Arpit, who’s been
a backend engineer for a really long time. In fact, we co-
founded two startups together, before this. 

Pre-Appsmith, Arpit was working at CureFit, and I was an EIR
at Accel Partners. Arpit from his previous startup experiences



had seen that, at every startup, he was building a lot of admin
panels, control panels, and a lot of tools to basically display
some database data and interact with that. As a backend
engineer, he had always struggled building the UIs for these
kinds of database applications because he didn’t like working
on HTML/CSS.
He was tinkering around with this idea of how you might build
these UIs faster than using HTML and CSS, and yet more
flexibly than using something like Django Admin. This was all
happening before this whole low-code/no code space
emerged. 

The company really got started when I was helping him out
with some research about this, and I realized there was a huge
space in between simple CRUD apps and the heavy enterprise
apps that SAP or Salesforce sell.

I realized that this was a nice way of entering a market—by
targeting developers and those who have not been buying
traditional low-code products.

There are a few main differentiators that we were focused on
day one and that we continue to focus on today.

The first is that Appsmith is open source.

Second, you can self-host Appsmith on your servers, and
Appsmith was the first product like this where that was
possible.

Now, of course, a lot of players in the industry have adopted
the self-hosted model as well, but back then, there was literally
no option if you had to self-host.

Next, we had noticed the other app builders—companies like
OutSystems, Mendix, Power Apps, Google AppSheet and all of
these players—were quite focused on the semi-technical or the
non-technical user. There was nothing that was focused on the
developer. 

There are very specific things that developers need that a
business user or a semi-technical user doesn't care about. 

A developer wants flexibility to extend the platform using code.
They want the ability to write code instead of clicking



dropdowns to configure something or create logic. They want
to be able to write and maintain the code along with any
applications that are built so that in future, it's easy for a
different team member to either pick it up or extend that.
That's another area where we realized, “Hey! Here's a new
chance of differentiation.” Focus on the developer as the main
user and the engineering team as the buyer for a product like
Appsmith versus looking at traditional companies like
OutSystems and some of these other low code players. They
have focused on the CIO or the business head to buy their
platform and not the engineer. It's a top-down motion and not a
bottoms-up adoption. 

These were sort of the multiple things that convinced us to
start. It was definitely exciting to be the first open source player
in this entire category because we knew that any category
where you're building something for developers, is ripe for
disruption by an open source product. 

We have seen that with web frameworks, CMSs, and
databases in the 2000s. That's something that we knew had to
happen even for these low code application builders. We're
very clear that open source is going to be a disruptive
innovator to all of these other proprietary players.

Appsmith is differentiated in the space with its open 
source approach. Why did you choose the open-source 
model for Appsmith and can you share how you think 
about the role that open source plays in internal tools 
SaaS?

The main reason why we decided to do open source was that
we realized people needed something they could host on their
own servers. That was really essential, because for an
application builder like Appsmith or other players to be
successful, it needs to be easy for them to connect a tool with
their PostgreSQL or MySQL database—otherwise, they cannot
easily build an application. 

When you have a cloud hosted service, the developer basically
needs to go to the broad DB and white-list certain IPs and
then, ensure that the cloud hosted provider can access their
data. But this actually opens up more interfaces where there is
more risk. The more you expose your DB to the internet, it
simply is more likely that it's going to get attacked.



That's why we realized, “Hey! If it's open source, it
communicates two things to developers. Number one, it's self-
hosted. But number two, the source is available.” This means
that if you run into a bug, you can actually go in and figure out,
“Hey! Why does the bug arise?” If you want to extend it
because you're not happy with something that exists, you want
to modify it or you want to add something new to it, it's easy for
you to go on and do that. 

If Appsmith has a data source that's missing, that's not a
limitation for our users because they just go on and contribute
a data source. If they have a widget missing, they just go on
and contribute a widget. It's like it's giving power to that
engineer versus when it's proprietary, you're taking a lot of
control away from that user. 

Proprietary or open source, it wouldn't matter if it was a
business user. If the user was a non-technical user, I don't
think they would care that much about proprietary versus open
source, but as soon as we're focused on developers and the
technical users as our audience, they immediately identify the
advantages that come with something that's open source.

When you started Appsmith, who were your first 
customers? What did they use Appsmith for? How did you 
find your initial product-market fit?

All our first customers and users actually came after we wrote
a blog post announcing that the project was launched. In our
first week, we had users from 30 countries. So, we launched
the project and it just took off. None of these early customers
or users were people that we knew of. We hadn't spoken to
them before. 

The early use cases were simple CRUD applications where
somebody was displaying data from their database in a table
and then providing a form to edit and update that data or add
new data. The early applications were very simple because the
platform itself was quite simplistic. It would let you do simple
tables and forms. We also had charts so, basically these three
things were the most common use cases of Appsmith.

Over time, we realized that the use cases could focus on
customer related operations—customer onboarding and
customer support. It could be you're running a marketing



campaign and you need a way of generating coupon codes, it
could be something ad hoc like that or could be something like
you're a fintech startup and you're doing a KYC process for
your customers, which is an onboarding process, but it's one
which has multiple people and multiple steps involved. So, the
majority of our use cases, and by majority, I would say about
60% of our use cases, are related to customer operations.
That's basically our focus. 
The other 40%, tends to be a long tail. We have a lot of users
who just build things for their engineering processes. They
build UI for their CI/CD pipeline for something that helps the
DevOps team, something that helps them generate sales
demos, mock data for sales demos, and all sorts of long tail
use cases. The long tail is really long because we have users
who are in the automotive industry, healthcare, fintech
startups, manufacturing industry, fire departments, universities,
schools, and all sorts of companies that I wouldn't have ever
accounted for in our early target total addressable market
calculations and stamp calculations. 

It's a really long tail of use cases that we end up seeing, but
the bulk of use cases tend to be around customer operations.

Were the people who came after reading your launch post, 
individual developers who are building something quick 
for their own teams and their orgs? Have those profiles 
changed over the years?

Not really, in the sense that the core user who adopts us is
always an engineer. What has changed though is the size of
the teams and the companies they work for. 

In the early days, it really used to be small agencies, very
small startups who were adopting us. But over time, as the
platform became better, we started getting adopted by mid-
sized companies with up to 5,000 people.

Today of course, we have a lot of Fortune 100, Fortune 500
companies using us where people will have thousands of users
on Appsmith. So, as the platform has matured, we've started
seeing very, very large companies adopt us. 

But the individual who adopts us, that hasn't really changed.
That has always been a developer and in most cases, it's been
a backend developer.



Building and selling in India vs. the US. What does your 
geographical segmentation of customers look like right 
now?

In the early days, a majority of our users used to come from
Europe because European companies are quite sensitive
about GDPR regulations, and all the cloud services that have
access to their data.

Over time today, our biggest market is in the US. That's our
biggest base. Our second base is India. The third, fourth, and
the fifth are the UK, Germany, France, and Japan. Actually,
China would be our third-biggest after the US, and India.
China, would be the third and then, the UK, and some of these
other European countries.

Do you see any differences in terms of the developer 
requirements or the nature of developers between the US 
and India? If you do see those differences, how are you 
straddling them?

The biggest difference that we see is, our product is a lot more
quickly adopted inside a company in the US versus in India
where the cost of the average developer is still low. People are
happy to throw more developers at the problem instead of
using an automation tool. 

Appsmith ultimately is an automation and productivity tool for a
developer so, when it comes to actual paying customers, we
don't see those many in India versus the US. 

But when it comes to open source users, we actually see quite
a few users in India, but we don't see very large companies
adopting us in India, yet. We see some large startups—
Swiggy, Dunzo, and lots of these very well-known ones that
use us today, but they generally tend to have maybe 300-400
people who use Appsmith versus in the US, where we see
thousands of people inside a company using us. So there's a
scale difference.

Talking about the US, we’ve seen some very large 
companies emerge out of open source there, such as 
GitLab and Docker. In India, the typically large open 
source SaaS companies have been few—Zoho, 
FreshWorks, and Whatfix, all which are large SaaS but 



proper. Do you see any blockers in terms of India building 
large open source SaaS companies?
No, not so much. I think the main reason why there weren't so
many open source companies—I can think of Hasura as being
one which is quite popular and ubiquitous—was that people in
India didn't have an understanding of open source business
models. 

In fact, we had trouble raising our seed round in India because
we were raising it in India. People just didn't get it. It took a
long time for people to understand it. Now of course you see a
lot of open source players actually emerge mostly because of
Hasura, Appsmith succeeding. 

But the other thing that has always been true is that India has
had a large base of open source contributors. There've been a
lot of engineers who've been contributing to PostgreSQL,
MySQL, and those large open source projects for a long time. 

There's also this language called Julia Lang, which is a
competitor to R that actually began in Bangalore because it
was created by somebody who was a CTO of the UIDAI
project. That person ended up creating Julia Lang. When you
look at it, you won't even know that that was started in
Bellandur in Bangalore because it's such a popular and
ubiquitous project like that. 

India has always had contributors, but when it came to
financing, that was difficult. When it came to understanding the
business model, that was difficult for local go-to-market people.
That's something that is changing. 

That, I would say, was our biggest hurdle but because of that,
a lot of our go-to-market folks are either based in Europe or in
the US where there is more awareness of these open source
business models.

What are your thoughts about the Indian SaaS ecosystem? 
It’s evolved over the last 8 or 10 years. What are the 
drivers of its evolution? Where do you think it's going?

Indian SaaS, when it first started, was very focused on the
SMB market. That's where our biggest successes are. The
reason Indian SaaS succeeds with SMB markets globally, and



not just in the US, is because we are able to produce really
high quality software and sell that for a lower cost base.
If you notice, American SaaS companies tend to be mostly
unprofitable. That's actually not the case for Indian SaaS
companies. Look at Zoho or FreshWorks, and their profitability
metrics are really good. FreshWorks of course, is not
profitable, but they just don't spend that much on sales and
marketing versus their American competitors. They just don't
lose that much money. So that's a huge advantage in India that
we have an amazing set of product managers, engineers who
are able to build really high quality products at prices that
make sense for the world outside of the US.

Today, I believe, the global software market is really big and
the global software market is where India has a huge, huge
opportunity. Three or four years ago, basically 70 cents out of
every dollar that used to be spent on software used to come
from the US. That's no longer the case. Today, that's becoming
closer to 55-60 cents and we know it's going to keep going
down. Some of the biggest well-known SaaS players like
Notion make way more revenue outside the US than they do in
the US. So that's where I see India's huge advantage. 

Over the last 10 years what has happened is, the Indians SaaS
companies who were pioneers, have created a base of talent
which is very skilled and equipped at go-to-market design,
product, and that is becoming a huge advantage for us. We
benefit a lot from ex-Zoho, ex-FreshWorks employees who
figured out, “Hey! This is how you go sell. This is how you go
to market.” That has been helping us. I believe India because
of its talent advantage and the fact that we are able to deliver a
mass market product at a mass market price, will have a huge
advantage. 

The biggest consumer brands in the world actually tend to be
mass market brands. They're not high-end premium brands
and that same thing is happening for software as well. You
need mass market products which can be adopted by schools
and people who might have smaller budgets. But American
companies cannot service these markets which do not have a
large budget. That's where we have a huge advantage.

A few years ago, VCs wouldn’t invest in Indian SaaS 
companies that did not have customer bases in the US 
because they thought that was where the largest market 



was. Has that changed? Is it still the same? Is it 
somewhere in between?
I still think it's similar in the sense that if you are not making a
lot of your revenue from the world's biggest software market,
which is the US, you don't really have that much of a chance to
succeed. 

The other thing is, for a lot of industry verticals, the US has the
most sophisticated buyers and therefore, you can create the
most sophisticated product because you have sophisticated
buyers who are doing certain things. Therefore, the US is a
great place where your product can actually improve a lot. It's
like a crucible where it's just going to go through a lot more
innovation than it would if you were just focused on India. 

I believe a SaaS company starting from India has to be global
from day one. They cannot focus on India and then, pivot and
start focusing on other markets. You absolutely have to be
global from day one. And that's something we believe at
Appsmith because that's how we started. 

Appsmith today has around 10,000 companies that use us
every month, but we have sent zero cold emails and we have
never run ads. It's been completely organic, which is really
surprising to people because people assume that if you have
to run a SaaS business, you have to go do cold email and you
have to do a sales-led approach. But here’s me sitting in my
bedroom, and our product reaches 180 countries of the world
and 10,000 teams in a month. That is only possible today.

When you say you're building a global internal tool for 
engineers, one of the top names which come to mind is 
Retool. How do you position Appsmith specifically vs. 
Retool and more generally vs. players like Airplane, 
Superblocks and some of the others? Are there specific 
use cases or industries where you think Appsmith is 
better suited?

One of Appsmith’s biggest competitors is actually React. 

In most places where we are adopted, people are moving
away from a React or an angular project, and then, using
Appsmith. The beauty of using Appsmith is you can embed
Appsmith in any of these legacy projects as well. So you have
a React project that's running, but you cannot extend it for



whatever reason. You can however, build it in Appsmith and
simply embed that application inside your React project. This is
something that's a huge advantage for Appsmith because
you're able to do this in the open source and the free edition,
and extend it. 
The second thing that's different about Appsmith is, when you
begin paying for Appsmith, it's usage-based pricing. You pay
40 cents per user per hour. You're not paying a seat-based
pricing. The reason is, because Appsmith's use cases are
immense and they're used by very, very large teams. What
seat-based pricing does is it forces you to ensure that you are
only paying for those users who are getting similar amounts of
value out of the internal apps that you are building. 

In case of Appsmith, some users may be using the internal
apps that are built like 15, 20 hours in a month. In other cases
they might just be using it for 1 or 2 hours in a month, but we
are able to serve all of these different use cases because of
our usage-based pricing. So that's a big differentiator. 

The third one of course, which I've been speaking about is
open source, self-hosted. The fact that there's a community,
and that you can modify and contribute, leads to a lot of
differentiation.In fact, Appsmith's project has enabled
Superblocks to be built. Superblocks is essentially a fork of
Appsmith, it's been built on top of Appsmith and they've gone
on to raise, I believe, $40 million. They're proprietary, but
they're built on top of Appsmith. So, whenever Appsmith's
project gets better, Superblocks also gets better because it's a
fork. About Superblocks, we don't really worry much about,
because our core project I believe, is still going to be better
than using a fork of it. 

When it comes to airplane.dev, their pitch is something
different. Their pitch is a lot more around Cron Jobs and being
a developer tool rather than something that's actually an
application builder that's going to be used by, for example,
your customer support team or your ops marketing team. It's
more of a developer tool. 

We sort of get bucketed in these categories for sure by
analysts and the industry, but we don't actually run into these
companies at all when customers compare us. 



When it comes to Retool, I think our positioning is very clear.
You have to choose something that's open source so that
you're not locked into a proprietary player. Use something that
has usage-based pricing instead of Retool's very expensive
seat-based pricing. In fact, in their self-hosted edition, you
have to pay a large platform fee and only then, do you adopt it.
So, something that Retool might charge you hundreds of
thousands of dollars for, Appsmith gives it away for free.

We are very well positioned against them and we have a lot of
Retool customers—their older customers and very large
customers—who actually moved to Appsmith. Over this and
the next couple of years, as our project gets more mature, we
believe that's going to be a huge trend.

I am looking at your pricing page. Don't you have a mix of 
seat-based plus usage-based pricing, like $0.40 plus $20 
for the core user? Could you help us understand the 
pricing model a little bit better?

The way our pricing works is basically it's 40 cents per hour
per user, but it's capped at $20 per user per month. So for
anybody who uses it a lot, it gets capped at $20 per user per
month. But for anybody who uses it very little, you're just going
to pay according to usage. This is how it works.

Let’s turn to the kind of use cases for Retool vs. Appsmith 
vs. Airplane. There are certain platforms engineers use to 
build internal tools where the employee/CTO/finance team 
is hitting a broad database. There are other tools used to 
build an external tool where someone from outside the 
company's hitting the broad database. How different are 
these tools? Do your customers use them 
interchangeably?

I’d say, the bulk of our users tend to be what are known as
internal customers. It's an employee, could be a partner, or
could be a consultant that you work with, but these are internal
customers. These are not customers who you're charging
money from. That's the bulk of our use cases. 

When it comes to external use cases, we do have a lot of
people using our community edition. We also have a few
people who pay for a business edition for customer-facing use
cases. But that's not something that we are well equipped for.



You can still use it, but because that's not a focus of our
platform, there are lots of features that are missing in the
platform that would enable that. 
Over time, we do believe there is going to be a market for
external-facing use cases and we'll definitely try to play in that
market once we begin to see more signs for it because, I
believe, there needs to be a Shopify equivalent for SaaS. 

Just like every ecommerce company used to be handcrafted,
every ecommerce website used to be hand-built and
handcrafted till Shopify came in and said, "Hey! You don't
really need to do that. There's lots of common use cases
here." 

That's something I believe will happen for SaaS as SaaS gets
commoditized. That's again something that we will definitely
play in that market. But as of today, we've not seen crazy
adoption there to warrant us to focus there, but maybe in a
couple of years.

Appsmith and Retool cater to developers who can write 
JavaScript, React, SQL. Webflow, Airtable and GPay are 
for the completely non-technical folk. Could you highlight 
the differences in features of external tools and tools 
being used to build apps for internal customers?

With tools used for building external customer-facing things,
their visual design, visual components, and the flexibility that
they allow is a lot higher than what is possible in Appsmith and
Retool. 

Let's take Webflow, Wix, WordPress for example. The visual
design possibilities that are there are very, very high. The
limitation is they generally don't do well with large amounts of
data. They're generally static sites, used for displaying data,
and not to let the customer modify or update data or do
workflows. So that's the trade-off that they have to make as an
external-facing product. 

The other thing is, as an external-facing product, you need to
provide a lot more customizability, which helps the developer
control the entire end-to-end customer experience. Starting
from the login page to what emails go out, when do they go
out, what are all the marketing automation that you need to



build in—all of those things are necessary in those customer-
facing products.
In case of internal facing products, at Appsmith, we are a more
opinionated platform where we've said, “Hey! The login page,
this is what it should look like. You can change the color, but
you can't really change everything there that you would like.”
The marketing automation that exists for communicating with
people—that's a fixed thing—and you can't really modify it too
much. There's some things you can change but not that much
because developers don't really care about it. So those are
basically the trade-offs. 

The trade-off is if you want more visual customization and
flexibility, you cannot have that much flexibility on the data side
of things. In case of Webflow or Airtable, you cannot connect to
any other database, but whatever they provide. There is no
option for you to go do that. Connect, talk to a PostgreSQL or
a MySQL, or if you do do that, it's very cumbersome for you to
make that happen. 

In case of Appsmith, you can really connect to or talk to
multiple, 15 plus databases, any SaaS product out there in the
world which has an API. There's nothing that's stopping you
doing it. 

So we focus a lot on flexibility on the data side of things and
we focus less on flexibility on the UI side of things.

Lastly, data security, user authentication, and role based
access controls are important features for internal customers,
but not so critical for external customers.

You said React was probably your biggest competitor. In 
that context, do you think you could phrase Appsmith as a 
lightweight PaaS used for deploying internal tools? If you 
agree, do you see more modern PaaS like Vercel or Netlify 
being your competitors in this market?

We don't consider ourselves PaaS. I would say we consider
ourselves more a custom web framework. We are a web
framework that's best for building CRUD applications and
database related applications. 

But when it comes to PaaS, they generally tend to be more on
the infra and the backend sides of things. In the case of



Appsmith, we don't give you a database from scratch, we
expect you to already have a database. Those are some of the
differences. 
When it comes to something like Vercel, for example, we use
Vercel internally for hosting our deploy previews. I can imagine
people using Vercel to host Appsmith and to use Appsmith.
Those things are possible. But I don't expect something like
Vercel or Next.js to be a big competitor for us at least today,
because there's just so many things that they are focused on,
which is for the external customer-facing application. They
need to pivot, do more things, and focus on the internal
customer. They can certainly compete, but it's not going to be
the best for them.

You mentioned usage-based, and being capped per user. 
How does your revenue expand once you're inside an org? 
Since you’re selling to the engineers, does your revenue 
get capped at the number of engineers an org can have?

There’s a couple of things. 

First, we charge for the business users who use applications
built on Appsmith and not for the engineers. So, once you build
something for customer support, we only charge for the
business users who are actually using that application. We do
charge a little for the developer when they're building, but
that's a very small percentage in comparison to what we
charge for actual usage. 

The idea behind the usage-based model is that it's a shared
risk model. We only charge you if the application is actually
used and successful. You're not getting charged just because
you adopted a platform. That's something that we've heard
repeatedly from people who've bought proprietary platforms
where they're like, "Hey! I signed up for 500 seats, but really
50 of them or 100 of them only use it. Everything else, we
hoped that they would adopt it, but they haven't adopted it
much." 

Again, with internal applications, you have to drive that internal
adoption. If you're choosing a platform whose incentives are
not aligned with increasing your adoption internally, you are
really going to struggle. That's one of the reasons why with the
usage-based model, it's a shared risk model. We don't get paid



if the applications are not getting used. That's amazing for our
customers. 
Second, the engineers and engineering teams are used to
paying for things on a usage-based model. That's how they
pay for infra, and the multiple analytics services. Appsmith is
different in the sense that we are sort of the first application
company which is charging for something like this in a usage-
based model. 

But that has actually worked really, really well for us and
helped us get adoption in very, very large companies. These
are companies who would not have adopted a proprietary
platform because they might have like 3,000-4,000 employees
and they don't want to pay a per seat price for every single
employee there. This versus when you have a usage-based
model, and they only pay once somebody begins using it and
only according to how much ever they use us.

What does success look like for Appsmith? Say five years 
from now, what does Appsmith become if everything goes 
well?

Appsmith should have the world's largest collection of internal
applications that anybody can use, fork, and get started
working on. 

Instead of having to build from scratch, they're actually able to
reuse other people's work. That's probably what success looks
like—a whole “App Store” like marketplace just focused on
business applications. Something like what only exists in the
Salesforce ecosystem today.

If you're a small municipality in a small European city and you
need certain tools, you either have to buy them from a large
company like SAP and do a big adoption, or you have to build
them from scratch. There is no middle ground.

There should be tools that you can just simply download and
begin using for your business. That's something that should be
possible and that's what success would look like for us.

Lastly, is there anything you’d like to add that we have not 
touched upon about Appsmith or the internal tools 
market?



The one thing that I would like to add is about how open
source is a way to commoditize the industry and a strong
disruptive innovation. 

First, what do I mean by commoditize? In the internal app
space, there are a bunch of new players and at least three of
them have actually used Appsmith's code to their businesses
on top of it. What we've done is what traditional, old,
proprietary players used to charge a bomb for. We've said,
“That's commoditized. You’ve got to innovate.” It's forced every
single player in this business to innovate in many, many
different ways. By commoditizing the space, we are actually
making the basic stuff available for free and forcing every
player to innovate, which is great for customers. 

Second, disruptive innovation. I mean it in the sense Clayton
Christensen uses it, which is you have a lower cost, lower
quality innovation that enters a market from the bottom and
begins to eat up all those use cases, which a previous player
cannot service profitably and therefore, does not want to
service it. They keep going up market but ultimately, what ends
up happening is that, that low cost player begins to improve
the quality of product, the use cases that it captures, and it
actually becomes a serious threat for all the other proprietary
players that existed before this. 

Those are two really interesting things that I find fascinating
about open source. That's something I can see is playing out in
this space really well.

Disclaimers
This transcript is for information purposes only and does not
constitute advice of any type or trade recommendation and
should not form the basis of any investment decision. Sacra
accepts no liability for the transcript or for any errors,
omissions or inaccuracies in respect of it. The views of the
experts expressed in the transcript are those of the experts
and they are not endorsed by, nor do they represent the
opinion of Sacra. Sacra reserves all copyright, intellectual
property rights in the transcript. Any modification, copying,
displaying, distributing, transmitting, publishing, licensing,
creating derivative works from, or selling any transcript is
strictly prohibited.


